\
JAKARTA EE

Jakarta Persistence

Jakarta Persistence Team, https://projects.eclipse.org/projects/ee4j.jpa

3.0, September 08, 2020:

Table of Contents

Eclipse Foundation Specification License
Disclaimers
Scope
1. Introduction
1.1. Expert Group
1.2. Document Conventions
2. Entities
2.1. The Entity Class
2.2. Persistent Fields and Properties
2.2.1. Example
2.3. Access Type
2.3.1. Default Access Type
2.3.2. Explicit Access Type
2.3.3. Access Type of an Embeddable Class
2.3.4. Defaulted Access Types of Embeddable Classes and Mapped Superclasses
2.4. Primary Keys and Entity Identity
2.4.1. Primary Keys Corresponding to Derived Identities
2.4.1.1. Specification of Derived Identities
2.4.1.2. Mapping of Derived Identities
2.4.1.3. Examples of Derived Identities
2.5. Embeddable Classes
2.6. Collections of Embeddable Classes and Basic Types
2.7. Map Collections
2.7.1. Map Keys
2.7.2. Map Values
2.8. Mapping Defaults for Non-Relationship Fields or Properties
2.9. Entity Relationships
2.10. Relationship Mapping Defaults
2.10.1. Bidirectional OneToOne Relationships
2.10.2. Bidirectional ManyToOne / OneToMany Relationships
2.10.3. Unidirectional Single-Valued Relationships
2.10.3.1. Unidirectional OneToOne Relationships
2.10.3.2. Unidirectional ManyToOne Relationships
2.10.4. Bidirectional ManyToMany Relationships
2.10.5. Unidirectional Multi-Valued Relationships
2.10.5.1. Unidirectional OneToMany Relationships

© 0 O O O R R W N R

W W W W W W W W W N N DN DN DN DNDN R R R = = = s
© © O U1 = =N O O 0 00 9 39 o O U b= b W W k=L = = O O

2.10.5.2. Unidirectional ManyToMany Relationships
2.11. Inheritance
2.11.1. Abstract Entity Classes
2.11.2. Mapped Superclasses
2.11.3. Non-Entity Classes in the Entity Inheritance Hierarchy
2.12. Inheritance Mapping Strategies
2.12.1. Single Table per Class Hierarchy Strategy
2.12.2. Joined Subclass Strategy
2.12.3. Table per Concrete Class Strategy
2.13. Naming of Database Objects
3. Entity Operations
3.1. EntityManager
3.1.1. EntityManager Interface
3.1.2. Example of Use of EntityManager API
3.2. Entity Instance’s Life Cycle
3.2.1. Entity Instance Creation
3.2.2. Persisting an Entity Instance
3.2.3. Removal
3.2.4. Synchronization to the Database
3.2.5. Refreshing an Entity Instance
3.2.6. Evicting an Entity Instance from the Persistence Context
3.2.7. Detached Entities
3.2.7.1. Merging Detached Entity State
3.2.7.2. Detached Entities and Lazy Loading
3.2.8. Managed Instances
3.2.9. Load State
3.3. Persistence Context Lifetime and Synchronization Type
3.3.1. Synchronization with the Current Transaction
3.3.2. Transaction Commit
3.3.3. Transaction Rollback
3.4. Locking and Concurrency
3.4.1. Optimistic Locking
3.4.2. Version Attributes
3.4.3. Pessimistic Locking
3.4.4. Lock Modes
3.4.4.1. OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT

3.4.4.2. PESSIMISTIC_READ, PESSIMISTIC_WRITE, PESSIMISTIC_FORCE_INCREMENT

3.4.4.3. Lock Mode Properties and Uses

40
42
42
43
435
46
47
47
47
48
52
52
52
72
72
73
73
74
74
75
76
76
77
77
78
78
79
80
80
81
81
81
82
82
84
84
86
88

3.4.5. OptimisticLockException
3.5. Entity Listeners and Callback Methods
3.5.1. Entity Listeners
3.5.2. Lifecycle Callback Methods
3.5.3. Semantics of the Life Cycle Callback Methods for Entities
3.5.4. Example
3.5.5. Multiple Lifecycle Callback Methods for an Entity Lifecycle Event
3.5.6. Example
3.5.7. Exceptions
3.5.8. Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor
3.5.8.1. Specification of Callback Listeners
3.5.8.2. Specification of the Binding of Entity Listener Classes to Entities
3.6. Bean Validation
3.6.1. Automatic Validation Upon Lifecycle Events
3.6.1.1. Enabling Automatic Validation
3.6.1.2. Requirements for Automatic Validation upon Lifecycle Events
3.6.2. Providing the ValidatorFactory
3.7. Entity Graphs
3.7.1. EntityGraph Interface
3.7.2. AttributeNode Interface
3.7.3. Subgraph Interface
3.7.4. Use of Entity Graphs in find and query operations
3.7.4.1. Fetch Graph Semantics
3.7.4.2. Load Graph Semantics
3.8. Type Conversion of Basic Attributes
3.9. Caching
3.9.1. The shared-cache-mode Element
3.9.2. Cache Retrieve Mode and Cache Store Mode Properties
3.10. Query APIs
3.10.1. Query Interface
3.10.2. TypedQuery Interface
3.10.3. Tuple Interface
3.10.4. TupleElement Interface
3.10.5. Parameter Interface
3.10.6. StoredProcedureQuery Interface
3.10.7. Query Execution
3.10.7.1. Example
3.10.8. Queries and Flush Mode

89
89
90
91
92
93
94
94
97
97
97
98
98
98
99
99
100
101
101
105
106
110
111
114
116
119
119
120
122
122
132
138
140
140
141
150
151
151

3.10.9. Queries and Lock Mode
3.10.10. Query Hints
3.10.11. Parameter Objects
3.10.12. Named Parameters
3.10.13. Positional Parameters
3.10.14. Named Queries
3.10.15. Polymorphic Queries
3.10.16. SQL Queries
3.10.16.1. Returning Managed Entities from Native Queries
3.10.16.2. Returning Unmanaged Instances
3.10.16.3. Combinations of Result Types
3.10.16.4. Restrictions
3.10.17. Stored Procedures
3.10.17.1. Named Stored Procedure Queries
3.10.17.2. Dynamically-specified Stored Procedure Queries
3.10.17.3. Stored Procedure Query Execution
3.11. Summary of Exceptions
4. Query Language
4.1. Overview
4.2. Statement Types
4.2.1. Select Statements
4.2.2. Update and Delete Statements
4.3. Abstract Schema Types and Query Domains
4.3.1. Naming
4.3.2. Example
4.4. The FROM Clause and Navigational Declarations
4.4.1. Identifiers
4.4.2. Identification Variables
4.4.3. Range Variable Declarations
4.4.4. Path Expressions
4.4.4.1. Path Expression Syntax
4.4.5. Joins
4.4.5.1. Inner Joins (Relationship Joins)
4.4.5.2. Left Outer Joins
4.4.5.3. Fetch Joins
4.4.6. Collection Member Declarations
4.4.7. FROM Clause and SQL
4.4.8. Polymorphism

152
153
153
153
154
154
154
155
155
159
161
161
161
161
162
162
163
167
167
167
168
168
169
169
170
171
172
173
174
175
176
178
179
179
181
182
182
183

4.4.9. Downcasting 183

4.5. WHERE Clause 184
4.6. Conditional Expressions 184
4.6.1. Literals 184
4.6.2. Identification Variables 185
4.6.3. Path Expressions 185
4.6.4. Input Parameters 185
4.6.4.1. Positional Parameters 186
4.6.4.2. Named Parameters 186
4.6.5. Conditional Expression Composition 186
4.6.6. Operators and Operator Precedence 187
4.6.7. Comparison Expressions 187
4.6.8. Between Expressions 188
4.6.9. In Expressions 189
4.6.10. Like Expressions 190
4.6.11. Null Comparison Expressions 190
4.6.12. Empty Collection Comparison Expressions 191
4.6.13. Collection Member Expressions 191
4.6.14. Exists Expressions 192
4.6.15. All or Any Expressions 192
4.6.16. Subqueries 193
4.6.17. Scalar Expressions 195
4.6.17.1. Arithmetic Expressions 195
4.6.17.2. Built-in String, Arithmetic, and Datetime Functional Expressions 195
4.6.17.3. Invocation of Predefined and User-defined Database Functions 197
4.6.17.4. Case Expressions 198
4.6.17.5. Entity Type Expressions 200

4.7. GROUP BY, HAVING 201
4.8. SELECT Clause 203
4.8.1. Result Type of the SELECT Clause 204
4.8.2. Constructor Expressions in the SELECT Clause 205
4.8.3. Null Values in the Query Result 206
4.8.4. Embeddables in the Query Result 206
4.8.5. Aggregate Functions in the SELECT Clause 207
4.8.5.1. Examples 208
4.8.6. Numeric Expressions in the SELECT Clause 209
4.9. ORDER BY Clause 210

4.10. Bulk Update and Delete Operations 212

4.11. Null Values
4.12. Equality and Comparison Semantics
4.13. Examples
4.13.1. Simple Queries
4.13.2. Queries with Relationships
4.13.3. Queries Using Input Parameters
4.14. BNF
5. Metamodel API
5.1. Metamodel API Interfaces
5.1.1. Metamodel Interface
5.1.2. Type Interface
5.1.3. ManagedType Interface
5.1.4. IdentifiableType Interface
5.1.5. EntityType Interface
5.1.6. EmbeddableType Interface
5.1.7. MappedSuperclassType Interface
5.1.8. BasicType Interface
5.1.9. Bindable Interface
5.1.10. Attribute Interface
5.1.11. SingularAttribute Interface
5.1.12. PluralAttribute Interface
5.1.13. CollectionAttribute Interface
5.1.14. SetAttribute Interface
5.1.15. ListAttribute Interface
5.1.16. MapAttribute Interface
5.1.17. StaticMetamodel Annotation
6. Criteria API
6.1. Overview
6.2. Metamodel
6.2.1. Static Metamodel Classes
6.2.1.1. Canonical Metamodel
6.2.1.2. Example
6.2.2. Bootstrapping
6.3. Criteria API Interfaces
6.3.1. CriteriaBuilder Interface
6.3.2. CommonAbstractCriteria Interface
6.3.3. AbstractQuery Interface

6.3.4. CriteriaQuery Interface

213
214
214
215
215
216
216
224
224
224
225
226
233
235
236
236
237
237
239
240
241
243
243
243
244
245
247
247
247
247
248
249
250
250
250
282
283
287

6.3.5. CriteriaUpdate Interface 294

6.3.6. CriteriaDelete Interface 296
6.3.7. Subquery Interface 298
6.3.8. Selection Interface 302
6.3.9. CompoundSelection Interface 303
6.3.10. Expression Interface 304
6.3.11. Predicate Interface 305
6.3.12. Path Interface 307
6.3.13. FetchParent Interface 309
6.3.14. Fetch Interface 311
6.3.15. From Interface 311
6.3.16. Root Interface 317
6.3.17. Join Interface 317
6.3.18. JoinType 319
6.3.19. Pluraljoin Interface 319
6.3.20. Collection]Join Interface 320
6.3.21. SetJoin Interface 322
6.3.22. ListJoin Interface 323
6.3.23. MapJoin Interface 324
6.3.24. Order Interface 325
6.3.25. ParameterExpression Interface 326
6.4. Criteria Query API Usage 327
6.5. Constructing Criteria Queries 327
6.5.1. CriteriaQuery Creation 327
6.5.2. Query Roots 328
6.5.3. Joins 329
6.5.4. Fetch Joins 331
6.5.5. Path Navigation 331
6.5.6. Restricting the Query Result 333
6.5.7. Downcasting 334
6.5.8. Expressions 335
6.5.8.1. Result Types of Expressions 338
6.5.9. Literals 339
6.5.10. Parameter Expressions 340
6.5.11. Specifying the Select List 340
6.5.11.1. Assigning Aliases to Selection Items 343
6.5.12. Subqueries 344

6.5.13. GroupBy and Having 348

6.5.14. Ordering the Query Results 349

6.5.15. Bulk Update and Delete Operations 351
6.6. Constructing Strongly-typed Queries using the jakarta.persistence.metamodel Interfaces 354
6.7. Use of the Criteria API with Strings to Reference Attributes 355
6.8. Query Modification 357
6.9. Query Execution 358

7. Entity Managers and Persistence Contexts 359
7.1. Persistence Contexts 359
7.2. Obtaining an EntityManager 359

7.2.1. Obtaining an Entity Manager in the Jakarta EE Environment 360

7.2.2. Obtaining an Application-managed Entity Manager 361
7.3. Obtaining an Entity Manager Factory 361

7.3.1. Obtaining an Entity Manager Factory in a Jakarta EE Container 361

7.3.2. Obtaining an Entity Manager Factory in a Java SE Environment 362
7.4. EntityManagerFactory Interface 362
7.5. Controlling Transactions 367

7.5.1. JTA EntityManagers 367

7.5.2. Resource-local EntityManagers 367

7.5.3. The EntityTransaction Interface 368

7.5.4. Example 369
7.6. Container-managed Persistence Contexts 370

7.6.1. Persistence Context Synchronization Type 371

7.6.2. Container-managed Transaction-scoped Persistence Context 372

7.6.3. Container-managed Extended Persistence Context 372

7.6.3.1. Inheritance of Extended Persistence Context 372
7.6.4. Persistence Context Propagation 373
7.6.4.1. Requirements for Persistence Context Propagation 373
7.6.5. Examples 374
7.6.5.1. Container-managed Transaction-scoped Persistence Context 374
7.6.5.2. Container-managed Extended Persistence Context 374

7.7. Application-managed Persistence Contexts 375
7.7.1. Examples 376
7.7.1.1. Application-managed Persistence Context used in Stateless Session Bean 376
7.7.1.2. Application-managed Persistence Context used in Stateless Session Bean 377
7.7.1.3. Application-managed Persistence Context used in Stateful Session Bean 379
7.7.1.4. Application-managed Persistence Context with Resource Transaction 380

7.8. Requirements on the Container 380

7.8.1. Application-managed Persistence Contexts 381

7.8.2. Container Managed Persistence Contexts 381

7.9. Runtime Contracts between the Container and Persistence Provider 381
7.9.1. Container Responsibilities 381
7.9.2. Provider Responsibilities 382

7.10. Cache Interface 383

7.11. PersistenceUnitUtil Interface 384

8. Entity Packaging 387

8.1. Persistence Unit 387

8.2. Persistence Unit Packaging 387
8.2.1. persistence.xml file 388

8.2.1.1. name 389
8.2.1.2. transaction-type 389
8.2.1.3. description 390
8.2.1.4. provider 390
8.2.1.5. jta-data-source, non-jta-data-source 390
8.2.1.6. mapping-file, jar-file, class, exclude-unlisted-classes 390
8.2.1.7. shared-cache-mode 394
8.2.1.8. validation-mode 394
8.2.1.9. properties 394
8.2.1.10. Examples 396
8.2.2. Persistence Unit Scope 398
8.3. persistence.xml Schema 399
9. Container and Provider Contracts for Deployment and Bootstrapping 407

9.1.Jakarta EE Deployment 407

9.2. Bootstrapping in Java SE Environments 408
9.2.1. Schema Generation 409

9.3. Determining the Available Persistence Providers 409
9.3.1. PersistenceProviderResolver interface 410
9.3.2. PersistenceProviderResolverHolder class 411

9.4. Schema Generation 413
9.4.1. Data Loading 415

9.5. Responsibilities of the Persistence Provider 416
9.5.1. jakarta.persistence.spi.PersistenceProvider 416
9.5.2. jakarta.persistence.spi.ProviderUtil 419

9.6. jakarta.persistence.spi.PersistenceUnitInfo Interface 421
9.6.1. jakarta.persistence.spi.ClassTransformer Interface 428

9.7.jakarta.persistence.Persistence Class 430

9.8. PersistenceUtil Interface 435

9.8.1. Contracts for Determining the Load State of an Entity or Entity Attribute 436

10. Metadata Annotations 438
10.1. Entity 438
10.2. Callback Annotations 438
10.3. EntityGraph Annotations 439

10.3.1. NamedEntityGraph and NamedEntityGraphs Annotations 440
10.3.2. NamedAttributeNode Annotation 441
10.3.3. NamedSubgraph Annotation 441
10.4. Annotations for Queries 442
10.4.1. NamedQuery Annotation 442
10.4.2. NamedNativeQuery Annotation 443
10.4.3. NamedStoredProcedureQuery Annotation 444
10.4.4. Annotations for SQL Result Set Mappings 446
10.5. References to EntityManager and EntityManagerFactory 447
10.5.1. PersistenceContext Annotation 448
10.5.2. PersistenceUnit Annotation 449
10.6. Annotations for Type Converter Classes 450

11. Metadata for Object/Relational Mapping 452

11.1. Annotations for Object/Relational Mapping 452
11.1.1. Access Annotation 452
11.1.2. AssociationOverride Annotation 453
11.1.3. AssociationOverrides Annotation 457
11.1.4. AttributeOverride Annotation 459
11.1.5. AttributeOverrides Annotation 463
11.1.6. Basic Annotation 464
11.1.7. Cacheable Annotation 465
11.1.8. CollectionTable Annotation 466
11.1.9. Column Annotation 469
11.1.10. Convert Annotation 472
11.1.11. Converts Annotation 476
11.1.12. DiscriminatorColumn Annotation 477
11.1.13. DiscriminatorValue Annotation 478
11.1.14. ElementCollection Annotation 480
11.1.15. Embeddable Annotation 481
11.1.16. Embedded Annotation 482
11.1.17. EmbeddedId Annotation 483
11.1.18. Enumerated Annotation 484

11.1.19. ForeignKey Annotation 486

11.1.20
11.1.21
11.1.22
11.1.23
11.1.24
11.1.25
11.1.26
11.1.27

11.1.28.
11.1.29.
11.1.30.
11.1.31.
11.1.32.
11.1.33.
11.1.34.
11.1.35.
11.1.36.
11.1.37.
11.1.38.
11.1.39.
11.1.40.
11.1.41.
11.1.42.
11.1.43.
11.1.44.
11.1.45.
11.1.46.
11.1.47.
11.1.48.
11.1.49.
11.1.50.
11.1.51.
11.1.52.
11.1.53.

11.1.54
11.1.55
11.1.56

. GeneratedValue Annotation

. Id Annotation

. IdClass Annotation

. Index Annotation

. Inheritance Annotation

. JoinColumn Annotation

. JoinColumns Annotation

. JoinTable Annotation

Lob Annotation

ManyToMany Annotation
ManyToOne Annotation
MapKey Annotation
MapKeyClass Annotation
MapKeyColumn Annotation
MapKeyEnumerated Annotation
MapKeyJoinColumn Annotation
MapKeyJoinColumns Annotation
MapKeyTemporal Annotation
MappedSuperclass Annotation
Mapsld Annotation

OneToMany Annotation
OneToOne Annotation

OrderBy Annotation
OrderColumn Annotation
PrimaryKeyJoinColumn Annotation
PrimaryKeyJoinColumns Annotation
SecondaryTable Annotation
SecondaryTables Annotation
SequenceGenerator Annotation
SequenceGenerators Annotation
Table Annotation
TableGenerator Annotation
TableGenerators Annotation
Temporal Annotation

. Transient Annotation

. UniqueConstraint Annotation

. Version Annotation

11.2. Object/Relational Metadata Used in Schema Generation

487
488
489
490
491
492
498
499
501
502
506
509
511
513
517
518
525
526
526
527
528
531
535
538
541
543
545
548
549
550
551
552
535
535
556
557
558
558

11.2.1. Table-level elements 560

11.2.1.1. Table 560
11.2.1.2. Inheritance 560
11.2.1.3. SecondaryTable 560
11.2.1.4. CollectionTable 560
11.2.1.5. JoinTable 561
11.2.1.6. TableGenerator 561
11.2.2. Column-level elements 561
11.2.2.1. Column 561
11.2.2.2. MapKeyColumn 562
11.2.2.3. Enumerated, MapKeyEnumerated 562
11.2.2.4. Temporal, MapKeyTemporal 562
11.2.2.5. Lob 562
11.2.2.6. OrderColumn 562
11.2.2.7. DiscriminatorColumn 563
11.2.2.8. Version 563
11.2.3. Primary Key mappings 563
11.2.3.1.1d 563
11.2.3.2. EmbeddedId 564
11.2.3.3. GeneratedValue 564
11.2.4. Foreign Key Column Mappings 564
11.2.4.1. JoinColumn 564
11.2.4.2. MapKeyJoinColumn 565
11.2.4.3. PrimaryKeyJoinColumn 565
11.2.4.4. ForeignKey 565
11.2.5. Other Elements 566
11.2.5.1. SequenceGenerator 566
11.2.5.2. Index 566
11.2.5.3. UniqueConstraint 566
11.3. Examples of the Application of Annotations for Object/Relational Mapping 566
11.3.1. Examples of Simple Mappings 566
11.3.2. A More Complex Example 570
12. XML Object/Relational Mapping Descriptor 578
12.1. Use of the XML Descriptor 578
12.2. XML Overriding Rules 578
12.2.1. persistence-unit-defaults Subelements 579
12.2.1.1. schema 579

12.2.1.2. catalog 579

12.2.1.3. delimited-identifiers 579

12.2.1.4. access 579
12.2.1.5. cascade-persist 580
12.2.1.6. entity-listeners 580
12.2.2. Other Subelements of the entity-mappings element 580
12.2.2.1. package 580
12.2.2.2. schema 580
12.2.2.3. catalog 580
12.2.2.4. access 581
12.2.2.5. sequence-generator 581
12.2.2.6. table-generator 581
12.2.2.7. named-query 581
12.2.2.8. named-native-query 581
12.2.2.9. named-stored-procedure-query 582
12.2.2.10. sql-result-set-mapping 582
12.2.2.11. entity 582
12.2.2.12. mapped-superclass 582
12.2.2.13. embeddable 582
12.2.2.14. converter 583
12.2.3. entity Subelements and Attributes 583
12.2.3.1. metadata-complete 583
12.2.3.2. access 583
12.2.3.3. cacheable 583
12.2.3.4. name 583
12.2.3.5. table 584
12.2.3.6. secondary-table 584
12.2.3.7. primary-key-join-column 584
12.2.3.8. id-class 584
12.2.3.9. inheritance 584
12.2.3.10. discriminator-value 584
12.2.3.11. discriminator-column 585
12.2.3.12. sequence-generator 585
12.2.3.13. table-generator 585
12.2.3.14. attribute-override 585
12.2.3.15. association-override 585
12.2.3.16. convert 586
12.2.3.17. named-entity-graph 586

12.2.3.18. named-query 586

12.2.3.19. named-native-query
12.2.3.20. named-stored-procedure-query
12.2.3.21. sql-result-set-mapping
12.2.3.22. exclude-default-listeners
12.2.3.23. exclude-superclass-listeners
12.2.3.24. entity-listeners
12.2.3.25. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-
load
12.2.3.26. attributes
12.2.4. mapped-superclass Subelements and Attributes
12.2.4.1. metadata-complete
12.2.4.2. access
12.2.4.3. id-class
12.2.4.4. exclude-default-listeners
12.2.4.5. exclude-superclass-listeners
12.2.4.6. entity-listeners
12.2.4.7. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-
load
12.2.4.8. attributes
12.2.5. embeddable Subelements and Attributes

12.2.5.1. metadata-complete
12.2.5.2. access
12.2.5.3. attributes

12.3. XML Schema

Related Documents
Appendix A: Revision History
A.1. Maintenance Release Draft
A.2.Jakarta Persistence 3.0

586
586
587
587
587
587

587
587
589
589
589
589
589
590
590

590
590
592
592
592
592
593
642
643
643
644

Eclipse Foundation Specification License

Specification: Jakarta Persistence
Version: 3.0
Status: Final Release

Release: September 08, 2020

Copyright (c) 2019, 2020 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

« All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. [url to this license]”

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018 Eclipse Foundation. This software or document includes material copied from or
derived from [title and URI of the Eclipse Foundation specification document]."

Jakarta Persistence 1

Eclipse Foundation Specification License

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

2 Jakarta Persistence

Scope

Scope

Jakarta Persistence defines a standard for management of persistence and object/relational mapping in
Java® environments.

Jakarta Persistence 3

1.1. Expert Group

Chapter 1. Introduction

This document is the specification of the Jakarta API for the management of persistence and
object/relational mapping with Jakarta EE and Java SE. The technical objective of this work is to
provide an object/relational mapping facility for the Java application developer using a Java domain
model to manage a relational database.

The Jakarta Persistence 3.0 specification is the first release after moving the project to Eclipse
Foundation. All APIs are moved from javax.* package to jakarta.* package. All properties containing
javax as part of the name are renamed the way that javax is replaced with jakarta.

The Java Persistence 2.2 specification enhances the Jakarta Persistence API with support for repeating
annotations; injection into attribute converters; support for mapping of the java.time.LocalDate,
java.time.LocalTime, java.time.LocalDateTime, java.time.OffsetTime, and java.time.OffsetDateTime types;
and methods to retrieve the results of Query and TypedQuery as streams.

The Java Persistence 2.1 specification added support for schema generation, type conversion methods,
use of entity graphs in queries and find operations, unsynchronized persistence contexts, stored
procedure invocation, and injection into entity listener classes. It also includes enhancements to the
Java Persistence query language, the Criteria API, and to the mapping of native queries.

1.1. Expert Group

This revision to the JPA specification is based on JPA 2.1, whose work was conducted as part of JSR 338
under the Java Community Process Program. This specification is the result of the collaborative work
of the members of the JSR 338 Expert Group: akquinet tech@Spree: Michael Bouschen; Ericsson:
Nicolas Seyvet; IBM: Kevin Sutter, Pinaki Poddar; OW2: Florent Benoit; Oracle: Linda DeMichiel,
Gordon Yorke, Michael Keith; Pramati Technologies: Deepak Anupalli; Red Hat, Inc.: Emmanuel
Bernard, Steve Ebersole, Scott Marlow; SAP AG: Rainer Schweigkoffer; Sybase: Evan Ireland; Tmax Soft
Inc.: Miju Byon; Versant: Christian von Kutzleben; VMware: Oliver Gierke; individual members:
Matthew Adams; Adam Bien; Bernd Mueller; Werner Keil.

The work of the JSR 338 Expert Group was conducted using the jpa-spec.java.net project.

1.2. Document Conventions

The regular Times font is used for information that is prescriptive by this specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describing
typical use, or notes clarifying the text with prescriptive specification.

A monospaced font is used for code examples and to specify the BNF of the Jakarta Persistence query
language.

This document is written in terms of the use of Java language metadata annotations. An XML

4 Jakarta Persistence

1.2. Document Conventions

descriptor (as specified in Chapter 12) may be used as an alternative to annotations or to augment or
override annotations. The elements of this descriptor mirror the annotations and have the same
semantics. When semantic requirements are written in terms of annotations, it should be understood
that the same semantics apply when the XML descriptor is used as an alternative.

Jakarta Persistence 5

2.1. The Entity Class

Chapter 2. Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary classes
that serve as helper classes or that are used to represent the state of the entity.

This chapter describes requirements on entity classes and instances.

2.1. The Entity Class

The entity class must be annotated with the Entity annotation or denoted in the XML descriptor as an
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors as well.
The no-arg constructor must be public or protected.

The entity class must be a top-level class. An enum or interface must not be designated as an entity.

The entity class must not be final. No methods or persistent instance variables of the entity class may
be final.

If an entity instance is to be passed by value as a detached object (e.g., through a remote interface), the
entity class must implement the Serializable interface.

Entities support inheritance, polymorphic associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Entities may extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

The persistent state of an entity is represented by instance variables, which may correspond to
JavaBeans properties. An instance variable must be directly accessed only from within the methods of
the entity by the entity instance itself. Instance variables must not be accessed by clients of the entity.
The state of the entity is available to clients only through the entity’s methods—i.e., accessor methods
(getter/setter methods) or other business methods.

2.2. Persistent Fields and Properties

The persistent state of an entity is accessed by the persistence provider runtime' either via JavaBeans
style property accessors (“property access”) or via instance variables (“field access”). Whether
persistent properties or persistent fields or a combination of the two is used for the provider’s access
to a given class or entity hierarchy is determined as described in Section 2.3.

Terminology Note: The persistent fields and properties of an entity class are generically referred to in
this document as the “attributes” of the class.

6 Jakarta Persistence

2.2. Persistent Fields and Properties

The instance variables of a class must be private, protected, or package visibility independent of
whether field access or property access is used. When property access is used, the property accessor
methods must be public or protected.

It is required that the entity class follow the method signature conventions for JavaBeans read/write
properties (as defined by the JavaBeans Introspector class) for persistent properties when property
access is used.

In this case, for every persistent property property of type T of the entity, there is a getter method,
getProperty, and setter method setProperty. For boolean properties, isProperty may be used as an
alternative name for the getter method."”

For single-valued persistent properties, these method signatures are:

T getProperty()

void setProperty(T t)

Collection-valued persistent fields and properties must be defined in terms of one of the following
collection-valued interfaces regardless of whether the entity class otherwise adheres to the JavaBeans
method conventions noted above and whether field or property access is used: java.util.Collection,
java.util.Set, java.utilList ', java.util.Map. The collection implementation type may be used by the
application to initialize fields or properties before the entity is made persistent. Once the entity
becomes managed (or detached), subsequent access must be through the interface type.

Terminology Note: The terms “collection” and “collection-valued” are used in this specification to
denote any of the above types unless further qualified. In cases where a java.util.Collection type (or one
of its subtypes) is to be distinguished, the type is identified as such. The terms “map” and “map
collection” are used to apply to a collection of type java.util. Map when a collection of type java.util. Map
needs to be distinguished as such.

For collection-valued persistent properties, type T must be one of these collection interface types in the
method signatures above. Use of the generic variants of these collection types is encouraged (for
example, Set<Order>).

In addition to returning and setting the persistent state of the instance, property accessor methods may
contain other business logic as well, for example, to perform validation. The persistence provider
runtime executes this logic when property-based access is used.

Caution should be exercised in adding business logic to the accessor methods when property access is
used. The order in which the persistence provider runtime calls these methods when loading or storing
persistent state is not defined. Logic contained in such methods therefore should not rely upon a
specific invocation order.

If property access is used and lazy fetching is specified, portable applications should not directly access
the entity state underlying the property methods of managed instances until after it has been fetched

Jakarta Persistence 7

2.2. Persistent Fields and Properties

by the persistence provider."

If a persistence context is joined to a transaction, runtime exceptions thrown by property accessor
methods cause the current transaction to be marked for rollback; exceptions thrown by such methods
when used by the persistence runtime to load or store persistent state cause the persistence runtime to
mark the current transaction for rollback and to throw a PersistenceException that wraps the
application exception.

Entity subclasses may override the property accessor methods. However, portable applications must
not override the object/relational mapping metadata that applies to the persistent fields or properties
of entity superclasses.

The persistent fields or properties of an entity may be of the following types: Java primitive types,
java.lang.String, other Java serializable types (including wrappers of the primitive types,
java.math.Biginteger, java.math.BigDecimal , java.utilDate, java.util.Calendar”, java.sqlDate,
java.sql.Time, java.sql.Timestamp, byte[], Byte[], char[], Character[], java.time.LocalDate,
java.time.LocalTime, java.time.LocalDateTime, java.time.OffsetTime, java.time.OffsetDateTime, and user-
defined types that implement the Serializable interface); enums; entity types; collections of entity
types; embeddable classes (see Section 2.5); collections of basic and embeddable types (see Section 2.6).

Object/relational mapping metadata may be specified to customize the object/relational mapping and
the loading and storing of the entity state and relationships. See Chapter 11.

2.2.1. Example

public class Customer implements Serializable {
private Long 1id;
private String name;
private Address address;
private Collection<Order> orders = new HashSet();
private Set<PhoneNumber> phones = new HashSet();

// No-arg constructor
public Customer() {}

// property access is used
public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName() {

8 Jakarta Persistence

2.3. Access Type

return name;

}

public void setName(String name) {
this.name = name;

}

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

@0neToMany
public Collection<Order> getOrders() {
return orders;

}

public void setOrders(Collection<Order> orders) {
this.orders = orders;

}

@ManyToMany
public Set<PhoneNumber> getPhones() {
return phones;

}

public void setPhones(Set<PhoneNumber> phones) {
this.phones = phones;

}

// Business method to add a phone number to the customer
public void addPhone(PhoneNumber phone) {
this.getPhones().add(phone);

// Update the phone entity instance to refer to this customer
phone.addCustomer(this);

2.3. Access Type

Jakarta Persistence 9

2.3. Access Type

2.3.1. Default Access Type

By default, a single access type (field or property access) applies to an entity hierarchy. The default
access type of an entity hierarchy is determined by the placement of mapping annotations on the
attributes of the entity classes and mapped superclasses of the entity hierarchy that do not explicitly
specify an access type. An access type is explicitly specified by means of the Access annotation', as
described in Section 2.3.2.

When annotations are used to define a default access type, the placement of the mapping annotations
on either the persistent fields or persistent properties of the entity class specifies the access type as
being either field- or property-based access respectively.

When field-based access is used, the object/relational mapping annotations for the entity class
annotate the instance variables, and the persistence provider runtime accesses instance variables
directly. All non- transient instance variables that are not annotated with the Transient annotation are
persistent.

When property-based access is used, the object/relational mapping annotations for the entity class
annotate the getter property accessors'’, and the persistence provider runtime accesses persistent state
via the property accessor methods. All properties not annotated with the Transient annotation are
persistent.

Mapping annotations must not be applied to fields or properties that are transient or Transient.

All such classes in the entity hierarchy whose access type is defaulted in this way must be consistent in
their placement of annotations on either fields or properties, such that a single, consistent default
access type applies within the hierarchy. Any embeddable classes used by such classes will have the
same access type as the default access type of the hierarchy unless the Access annotation is specified as
defined below.

It is an error if a default access type cannot be determined and an access type is not explicitly specified
by means of annotations or the XML descriptor. The behavior of applications that mix the placement of
annotations on fields and properties within an entity hierarchy without explicitly specifying the Access
annotation is undefined.

2.3.2. Explicit Access Type

An access type for an individual entity class, mapped superclass, or embeddable class can be specified
for that class independent of the default for the entity hierarchy by means of the Access annotation
applied to the class. This explicit access type specification does not affect the access type of other entity
classes or mapped superclasses in the entity hierarchy. The following rules apply:

* When Access(FIELD) is applied to an entity class, mapped superclass, or embeddable class,
mapping annotations may be placed on the instance variables of that class, and the persistence
provider runtime accesses persistent state via the instance variables defined by the class. All non-
transient instance variables that are not annotated with the Transient annotation are persistent.

10 Jakarta Persistence

2.4. Primary Keys and Entity Identity

When Access(FIELD) is applied to such a class, it is possible to selectively designate individual
attributes within the class for property access. To specify a persistent property for access by the
persistence provider runtime, that property must be designated Access(PROPERTY).” The behavior
is undefined if mapping annotations are placed on any properties defined by the class for which
Access(PROPERTY) is not specified. Persistent state inherited from superclasses is accessed in
accordance with the access types of those superclasses.

* When Access(PROPERTY) is applied to an entity class, mapped superclass, or embeddable class,
mapping annotations may be placed on the properties of that class, and the persistence provider
runtime accesses persistent state via the properties defined by that class. All properties that are not
annotated with the Transient annotation are persistent. When Access(PROPERTY) is applied to such
a class, it is possible to selectively designate individual attributes within the class for instance
variable access. To specify a persistent instance variable for access by the persistence provider
runtime, that instance variable must be designated Access(FIELD). The behavior is undefined if
mapping annotations are placed on any instance variables defined by the class for which
Access(FIELD) is not specified. Persistent state inherited from superclasses is accessed in
accordance with the access types of those superclasses.

Note that when access types are combined within a class, the Transient annotation should be used to
avoid duplicate persistent mappings.

2.3.3. Access Type of an Embeddable Class

The access type of an embeddable class is determined by the access type of the entity class, mapped
superclass, or embeddable class in which it is embedded (including as a member of an element
collection) independent of whether the access type of the containing class has been explicitly specified
or defaulted. A different access type for an embeddable class can be specified for that embeddable
class by means of the Access annotation as described above.

2.3.4. Defaulted Access Types of Embeddable Classes and Mapped Superclasses

Care must be exercised when defining an embeddable class or mapped superclass which is used both
in a context of field access and in a context of property access and whose access type is not explicitly
specified by means of the Access annotation or XML mapping file.

Such classes should be defined so that the number, names, and types of the resulting persistent
attributes are identical, independent of the access type in use. The behavior of such classes whose
attributes are not independent of access type is otherwise undefined with regard to use with the
metamodel API if they occur in contexts of differing access types within the same persistence unit.

2.4. Primary Keys and Entity Identity
Every entity must have a primary key.

The primary key must be defined on the entity class that is the root of the entity hierarchy or on a
mapped superclass that is a (direct or indirect) superclass of all entity classes in the entity hierarchy.

Jakarta Persistence 11

2.4. Primary Keys and Entity Identity

The primary key must be defined exactly once in an entity hierarchy.

* A primary key corresponds to one or more fields or properties (“attributes”) of the entity class.

* A simple (i.e., non-composite) primary key must correspond to a single persistent field or property
of the entity class. The Id annotation or id XML element must be used to denote a simple primary
key. See Section 11.1.21.

* A composite primary key must correspond to either a single persistent field or property or to a set
of such fields or properties as described below. A primary key class must be defined to represent a
composite primary key. Composite primary keys typically arise when mapping from legacy
databases when the database key is comprised of several columns. The EmbeddedId or IdClass
annotation is used to denote a composite primary key. See Section 11.1.17 and Section 11.1.22.

A simple primary key or a field or property of a composite primary key should be one of the following
types: any Java primitive type; any primitive wrapper type; java.lang.String; java.util.Date;
java.sql.Date; java.math.BigDecimal; java.math.BigInteger.” If the primary key is a composite primary
key derived from the primary key of another entity, the primary key may contain an attribute whose
type is that of the primary key of the referenced entity as described in Section 2.4.1. Entities whose
primary keys use types other than these will not be portable. If generated primary keys are used, only
integral types will be portable. If java.util.Date is used as a primary key field or property, the temporal
type should be specified as DATE.

The following rules apply for composite primary keys:

* The primary key class must be public and must have a public no-arg constructor.

* The access type (field- or property-based access) of a primary key class is determined by the access
type of the entity for which it is the primary key unless the primary key is a embedded id and a
different access type is specified. See Section Section 2.3.

» If property-based access is used, the properties of the primary key class must be public or
protected.

* The primary key class must be serializable.

» The primary key class must define equals and hashCode methods. The semantics of value equality
for these methods must be consistent with the database equality for the database types to which
the key is mapped.

* A composite primary key must either be represented and mapped as an embeddable class (see
Section 11.1.17) or must be represented as an id class and mapped to multiple fields or properties
of the entity class (see Section 11.1.22).

* If the composite primary key class is represented as an id class, the names of primary key fields or
properties in the primary key class and those of the entity class to which the id class is mapped
must correspond and their types must be the same.

* A primary key that corresponds to a derived identity must conform to the rules of Section 2.4.1.

The value of its primary key uniquely identifies an entity instance within a persistence context and to

12 Jakarta Persistence

2.4. Primary Keys and Entity Identity

EntityManager operations as described in Chapter 3. The application must not change the value of the
primary key"”. The behavior is undefined if this occurs.""

2.4.1. Primary Keys Corresponding to Derived Identities

The identity of an entity may be derived from the identity of another entity (the “parent” entity) when
the former entity (the “dependent” entity) is the owner of a many-to-one or one-to-one relationship to
the parent entity and a foreign key maps the relationship from dependent to parent.

If a many-to-one or one-to-one entity relationship corresponds to a primary key attribute, the entity
containing this relationship cannot be persisted without the relationship having been assigned an
entity since the identity of the entity containing the relationship is derived from the referenced entity.

Derived identities may be captured by means of simple primary keys or by means of composite
primary keys as described in Section 2.4.1.1 below.

If the dependent entity class has primary key attributes in addition to those corresponding to the
parent’s primary key or if the parent has a composite primary key, an embedded id or id class must be
used to specify the primary key of the dependent entity. It is not necessary that parent entity and
dependent entity both use embedded ids or both use id classes to represent composite primary keys
when the parent has a composite key.

A dependent entity may have more than one parent entity.

2.4.1.1. Specification of Derived Identities

If the dependent entity uses an id class to represent its primary key, one of the two following rules
must be observed:

» The names of the attributes of the id class and the Id attributes of the dependent entity class must
correspond as follows:

o The Id attribute in the entity class and the corresponding attribute in the id class must have the
same name.

o If an Id attribute in the entity class is of basic type, the corresponding attribute in the id class
must have the same type.

o If an Id attribute in the entity is a many-to-one or one-to-one relationship to a parent entity, the
corresponding attribute in the id class must be of the same Java type as the id class or
embedded id of the parent entity (if the parent entity has a composite primary key) or the type
of the Id attribute of the parent entity (if the parent entity has a simple primary key).

 If the dependent entity has a single primary key attribute (i.e., the relationship attribute), the id
class specified by the dependent entity must be the same as the primary key class of the parent
entity. The Id annotation is applied to the relationship to the parent entity."”

If the dependent entity uses an embedded id to represent its primary key, the attribute in the

Jakarta Persistence 13

2.4. Primary Keys and Entity Identity

embedded id corresponding to the relationship attribute must be of the same type as the primary key
of the parent entity and must be designated by the Mapsld annotation applied to the relationship
attribute. The value element of the MapsId annotation must be used to specify the name of the attribute
within the embedded id to which the relationship attribute corresponds. If the embedded id of the
dependent entity is of the same Java type as the primary key of the parent entity, the relationship
attribute maps both the relationship to the parent and the primary key of the dependent entity, and in
this case the MapsId annotation is specified without the value element.""

If the dependent entity has a single primary key attribute (i.e, the relationship attribute or an attribute
that corresponds to the relationship attribute) and the primary key of the parent entity is a simple
primary key, the primary key of the dependent entity is a simple primary key of the same type as that
of the parent entity (and neither EmbeddedId nor IdClass is specified). In this case, either (1) the
relationship attribute is annotated Id, or (2) a separate Id attribute is specified and the relationship
attribute is annotated MapsId (and the value element of the MapsId annotation is not specified).

2.4.1.2. Mapping of Derived Identities

A primary key attribute that is derived from the identity of a parent entity is mapped by the
corresponding relationship attribute. The default mapping for this relationship is as specified in
Section 2.10. In the case where a default mapping does not apply or where a default mapping is to be
overridden, the JoinColumn or JoinColumns annotation is used on the relationship attribute.

If the dependent entity uses an embedded id to represent its primary key, the AttributeOverride
annotation may be used to override the default mapping of embedded id attributes that do not
correspond to the relationship attributes mapping the derived identity. The embedded id attributes
that correspond to the relationship are treated by the provider as “read only”—that is, any updates to
them on the part of the application are not propagated to the database.

If the dependent uses an id class, the Column annotation may be used to override the default mapping
of Id attributes that are not relationship attributes.

2.4.1.3. Examples of Derived Identities

Example 1:

The parent entity has a simple primary key:

public class Employee {
long empld;
String empName;

/] ...

Case (a): The dependent entity uses IdClass to represent a composite key:

14 Jakarta Persistence

2.4. Primary Keys and Entity Identity

public class DependentId {
String name; // matches name of @Id attribute
long emp; // matches name of @Id attribute and type of Employee PK

}

@Entity

@IdClass(DependentId.class)

public class Dependent {
@Id String name;

// 1d attribute mapped by join column default
©@Id @ManyToOne
Employee emp;

/] ...

Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' AND d.emp.empName = 'Sam'

Case(b): The dependent entity uses EmbeddedId to represent a composite key:

@Embeddable
public class DependentId {

String name;

long empPK; // corresponds to PK type of Employee
¥

@Entity

public class Dependent {
@EmbeddedId DependentId 1id;

// id attribute mapped by join column default
@MapsId("empPK") // maps empPK attribute of embedded id
@ManyToOne

Employee emp;

/] ...

Sample query:

Jakarta Persistence 15

2.4. Primary Keys and Entity Identity

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.emp.empName = 'Sam’

Example 2:

The parent entity uses IdClass:

public class Employeeld {
String firstName;
String lastName;

/] ...
}

@Entity

@ldClass(Employeeld.class)

public class Employee {
@Id String firstName
@Id String lastName

/] ...

Case (a): The dependent entity uses IdClass:

16 Jakarta Persistence

2.4. Primary Keys and Entity Identity

public class DependentId {
String name; // matches name of attribute
Employeeld emp; //matches name of attribute and type of Employee PK

}

@Entity
@IdClass(DependentId.class)
public class Dependent {
@Id
String name;

@Id

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="f1irstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

1))

@ManyToOne
Employee emp;

Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' AND d.emp.firstName = 'Sam’

Case (b): The dependent entity uses EmbeddedId. The type of the empPK attribute is the same as that of
the primary key of Employee. The Employeeld class needs to be annotated Embeddable or denoted as an
embeddable class in the XML descriptor.

Jakarta Persistence 17

2.4. Primary Keys and Entity Identity

@Embeddable

public class DependentId {
String name;
Employeeld empPK;

}
@Entity
public class Dependent {
@EmbeddedId
DependentId 1id;
@MapsId("empPK")
@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")
b
@ManyToOne
Employee emp;
/] ...
}
Sample query:
SELECT d

FROM Dependent d
WHERE d.id.name = 'Joe' AND d.emp.firstName = 'Sam'

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.empPK.firstName = 'Sam'

Example 3:

The parent entity uses EmbeddedId:

18 Jakarta Persistence

2.4. Primary Keys and Entity Identity

@Embeddable

public class Employeeld {
String firstName;
String lastName;

/] ...

}

@Entity

public class Employee {
@EmbeddedId
Employeeld empld;
/] ...

}

Case (a): The dependent entity uses IdClass:

public class DependentId {
String name; // matches name of @Id attribute
Employeeld emp; // matches name of @Id attribute and type of embedded id of Employee

}

@Entity

@IdClass(DependentId.class)

public class Dependent {
@Id
@Column(name="dep_name") // default column name is overridden
String name;

@Id

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="f1irstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

1))
@ManyToOne Employee
emp;
}
Sample query:

Jakarta Persistence 19

2.4. Primary Keys and Entity Identity

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' and d.emp.empIld.firstName = 'Sam'

Case (b): The dependent entity uses EmbeddedId:

@Embeddable
public class DependentId {
String name;
Employeeld empPK; // corresponds to PK type of Employee

}

@Entity

public class Dependent {
// default column name for "name" attribute is overridden
EAttributeOverride(name="name", column=@Column(name="dep_name"))
@EmbeddedId DependentId 1id;

@MapsId("empPK")

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="f1irstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

})
@ManyToOne

Employee emp;

/] ...

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' and d.emp.empld.firstName = 'Sam'

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.empPK.firstName = 'Sam'

Example 4:

20 Jakarta Persistence

2.4. Primary Keys and Entity Identity

The parent entity has a simple primary key:

public class Person {
String ssn;

/] ...

Case (a): The dependent entity has a single primary key attribute which is mapped by the relationship
attribute. The primary key of MedicalHistory is of type String.

public class MedicalHistory {
// default join column name is overridden

(name="FK")
Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.ssn = '123-45-6789'

Case (b): The dependent entity has a single primary key attribute corresponding to the relationship
attribute. The primary key attribute is of the same basic type as the primary key of the parent entity.
The MapsId annotation applied to the relationship attribute indicates that the primary key is mapped
by the relationship attribute."”

Jakarta Persistence 21

2.4. Primary Keys and Entity Identity

@Entity
public class MedicalHistory {
eId
String id; // overriding not allowed

/] ...

// default join column name is overridden
@MapsId

@JoinColumn(name="FK")

@0neToOne

Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m WHERE m.patient.ssn = '123-45-6789"'

Example 5:

The parent entity uses IdClass. The dependent’s primary key class is of same type as that of the parent
entity.

public class PersonId {
String firstName;
String lastName;

¥

@Entity
@IdClass(Personld.class)
public class Person {

eId
String firstName;

eId
String lastName;

VA

Case (a): The dependent entity uses IdClass:

22 Jakarta Persistence

2.4. Primary Keys and Entity Identity

@Entity
@IdClass(PersonId.class)
public class MedicalHistory {
@Id
@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

}

@0neToOne
Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.firstName = 'Charles’

Case (b): The dependent entity uses the EmbeddedId and MapsId annotations. The Personld class needs
to be annotated Embeddable or denoted as an embeddable class in the XML descriptor.

@Entity

public class MedicalHistory {
// all attributes map to relationship:
AttributeOverride not allowed

@EmbeddedId
PersonId id;

/] ...
@MapsId
@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="f1irstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")
3]

@0neToOne Person patient;

/] ...

Jakarta Persistence 23

2.4. Primary Keys and Entity Identity

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.firstName = 'Charles'

Note that the following alternative query will yield the same result:

SELECT m
FROM MedicalHistory m
WHERE m.id.firstName = 'Charles'

Example 6:

The parent entity uses EmbeddedId. The dependent’s primary key is of the same type as that of the
parent.

public class Personld {
String firstName;
String lastName;

public class Person {
Personld id;

/] ...

Case (a): The dependent class uses IdClass:

24 Jakarta Persistence

2.5. Embeddable Classes

(PersonId.class)
public class MedicalHistory {

(

(name="FK1", referencedColumnName="firstName"),
(name="FK2", referencedColumnName="1astName")

1))

Person patient;

/] ...

Case (b): The dependent class uses EmbeddedId:

public class MedicalHistory {
// A1l attributes are mapped by the relationship
// AttributeOverride is not allowed
Personld id;

/] ...

(

(name="FK1", referencedColumnName="firstName"),
(name="FK2", referencedColumnName="1astName")

1))

Person patient;

/] ...

2.5. Embeddable Classes

An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike
entity instances, do not have persistent identity of their own. Instead, they exist only as part of the
state of the entity to which they belong. An entity may have collections of embeddables as well as
single-valued embeddable attributes. Embeddables may also be used as map keys and map values.
Embedded objects belong strictly to their owning entity, and are not sharable across persistent entities.
Attempting to share an embedded object across entities has undefined semantics.

Jakarta Persistence 25

2.6. Collections of Embeddable Classes and Basic Types

Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the
exception that embeddable classes are not annotated as Entity. Embeddable classes must be annotated
as Embeddable or denoted in the XML descriptor as such. The access type for an embedded object is
determined as described in Section 2.3.

An embeddable class may be used to represent the state of another embeddable class.

An embeddable class (including an embeddable class within another embeddable class) may contain a
collection of a basic type or other embeddable class."”

An embeddable class may contain a relationship to an entity or collection of entities. Since instances of
embeddable classes themselves have no persistent identity, the relationship from the referenced entity
is to the entity that contains the embeddable instance(s) and not to the embeddable itself"” An
embeddable class that is used as an embedded id or as a map key must not contain such a relationship.

Additional requirements and restrictions on embeddable classes are described in Section 2.6.

2.6. Collections of Embeddable Classes and Basic Types

A persistent field or property of an entity or embeddable class may correspond to a collection of a
basic type or embeddable class (“element collection”). Such a collection, when specified as such by the
ElementCollection annotation, is mapped by means of a collection table, as defined in Section 11.1.8. If
the ElementCollection annotation (or XML equivalent) is not specified for the collection-valued field or
property, the rules of Section 2.8 apply.

An embeddable class (including an embeddable class within another embeddable class) that is
contained within an element collection must not contain an element collection, nor may it contain a
relationship to an entity other than a many-to-one or one-to-one relationship. The embeddable class
must be on the owning side of such a relationship and the relationship must be mapped by a foreign
key mapping. (See Section 2.9)

2.7. Map Collections
Collections of elements and entity relationships can be represented as java.util. Map collections.

The map key and the map value independently can each be a basic type, an embeddable class, or an
entity.

The ElementCollection, OneToMany, and ManyToMany annotations are used to specify the map as an
element collection or entity relationship as follows: when the map value is a basic type or embeddable
class, the ElementCollection annotation is used; when the map value is an entity, the OneToMany or
ManyToMany annotation is used.

Bidirectional relationships represented as java.util. Map collections support the use of the Map datatype
on one side of the relationship only.

26 Jakarta Persistence

2.7. Map Collections

2.7.1. Map Keys

If the map key type is a basic type, the MapKeyColumn annotation can be used to specify the column
mapping for the map key. If the MapKeyColumn annotation is not specified, the default values of the
MapKeyColumn annotation apply as described in Section 11.1.33.

If the map key type is an embeddable class, the mappings for the map key columns are defaulted
according to the default column mappings for the embeddable class. (See Section 11.1.9). The
AttributeOverride and AttributeOverrides annotations can be used to override these mappings, as
described in Section 11.1.4 and Section 11.1.5. If an embeddable class is used as a map key, the
embeddable class must implement the hashCode and equals methods consistently with the database
columns to which the embeddable is mapped"®.

If the map key type is an entity, the MapKeyJoinColumn and MapKeyJoinColumns annotations are used
to specify the column mappings for the map key. If the primary key of the referenced entity is a simple
primary key and the MapKeyJoinColumn annotation is not specified, the default values of the
MapKeyJoinColumn annotation apply as described in Section 11.1.35.

If Java generic types are not used in the declaration of a relationship attribute of type java.util. Map, the
MapKeyClass annotation must be used to specify the type of the key of the map.

The MapKey annotation is used to specify the special case where the map key is itself the primary key
or a persistent field or property of the entity that is the value of the map. The MapKeyClass annotation
is not used when MapKey is specified.

2.7.2. Map Values

When the value type of the map is a basic type or an embeddable class, a collection table is used to
map the map. If Java generic types are not used, the targetClass element of the ElementCollection
annotation must be used to specify the value type for the map. The default column mappings for the
map value are derived according to the default mapping rules for the CollectionTable annotation
defined in Section 11.1.8. The Column annotation is used to override these defaults for a map value of
basic type. The AttributeOverride(s) and AssociationOverride(s) annotations are used to override the
mappings for a map value that is an embeddable class.

When the value type of the map is an entity, a join table is used to map the map for a many-to-many
relationship or, by default, for a one-to-many unidirectional relationship. If the relationship is a
bidirectional one-to-many/many-to-one relationship, by default the map is mapped in the table of the
entity that is the value of the map. If Java generic types are not used, the targetEntity element of the
OneToMany or ManyToMany annotation must be used to specify the value type for the map. Default
mappings are described in Section 2.10.

Jakarta Persistence 27

2.8. Mapping Defaults for Non-Relationship Fields or Properties

2.8. Mapping Defaults for Non-Relationship Fields or
Properties

If a persistent field or property other than a relationship property is not annotated with one of the
mapping annotations defined in Chapter 11 (or equivalent mapping information is not specified in the
XML descriptor), the following default mapping rules are applied in order:

« If the type is a class that is annotated with the Embeddable annotation, it is mapped in the same
way as if the field or property were annotated with the Embedded annotation. See Section 11.1.15
and Section 11.1.16.

« If the type of the field or property is one of the following, it is mapped in the same way as it would
if it were annotated as Basic: Java primitive types, wrappers of the primitive types, java.lang.String,
java.math.BigInteger, java.math.BigDecimal, java.utilDate, java.util.Calendar, java.sqlDate,
java.sql.Time, java.sql. Timestamp, java.time.LocalDate, java.time.LocalTime,
java.time.LocalDateTime, java.time.OffsetTime, java.time.OffsetDateTime, byte[], Byte[], charl],
Character[], enums, any other type that implements Serializable. See Section 11.1.6, Section 11.1.18,
Section 11.1.28, and Section 11.1.53.

It is an error if no annotation is present and none of the above rules apply.

2.9. Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many.
Relationships are polymorphic.

If there is an association between two entities, one of the following relationship modeling annotations
must be applied to the corresponding persistent property or field of the referencing entity: OneToOne,
OneToMany, ManyToOne, ManyToMany. For associations that do not specify the target type (e.g., where
Java generic types are not used for collections), it is necessary to specify the entity that is the target of
the relationship."” Equivalent XML elements may be used as an alternative to these mapping
annotations.

These annotations mirror common practice in relational database schema modeling. The use of the
relationship modeling annotations allows the object/relationship mapping of associations to the
relational database schema to be fully defaulted, to provide an ease-of-development facility. This is
described in Section 2.10.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an owning
side and an inverse (non-owning) side. A unidirectional relationship has only an owning side. The
owning side of a relationship determines the updates to the relationship in the database, as described
in Section 3.2.4.

The following rules apply to bidirectional relationships:

The inverse side of a bidirectional relationship must refer to its owning side by use of the mappedBy

28 Jakarta Persistence

2.9. Entity Relationships

element of the OneToOne, OneToMany, or ManyToMany annotation. The mappedBy element designates
the property or field in the entity that is the owner of the relationship.

* The many side of one-to-many / many-to-one bidirectional relationships must be the owning side,
hence the mappedBy element cannot be specified on the ManyToOne annotation.

* For one-to-one bidirectional relationships, the owning side corresponds to the side that contains
the corresponding foreign key.

* For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use of the cascade=REMOVE specification. The
cascade=REMOVE specification should only be applied to associations that are specified as OneToOne
or OneToMany. Applications that apply cascade=REMOVE to other associations are not portable.

Associations that are specified as OneToOne or OneToMany support use of the orphanRemoval option.
The following behaviors apply when orphanRemoval is in effect:

 If an entity that is the target of the relationship is removed from the relationship (by setting the
relationship to null or removing the entity from the relationship collection), the remove operation
will be applied to the entity being orphaned. The remove operation is applied at the time of the
flush operation. The orphanRemoval functionality is intended for entities that are privately
“owned” by their parent entity. Portable applications must otherwise not depend upon a specific
order of removal, and must not reassign an entity that has been orphaned to another relationship
or otherwise attempt to persist it. If the entity being orphaned is a detached, new, or removed
entity, the semantics of orphanRemoval do not apply.

» If the remove operation is applied to a managed source entity, the remove operation will be
cascaded to the relationship target in accordance with the rules of Section 3.2.3, (and hence it is not
necessary to specify cascade=REMOVE for the relationship)™”.

Section 2.10, defines relationship mapping defaults for entity relationships. Additional mapping
annotations (e.g., column and table mapping annotations) may be specified to override or further
refine the default mappings and mapping strategies described in Section 2.10.

In addition, this specification also requires support for the following alternative mapping strategies:

* The mapping of unidirectional one-to-many relationships by means of foreign key mappings. The
JoinColumn annotation or corresponding XML element must be used to specify such non-default
mappings. See Section 11.1.25.

* The mapping of unidirectional and bidirectional one-to-one relationships, bidirectional many-to-
one/one-to-many relationships, and unidirectional many-to-one relationships by means of join
table mappings. The JoinTable annotation or corresponding XML element must be used to specify
such non-default mappings. See Section 11.1.27.

Such mapping annotations must be specified on the owning side of the relationship. Any overriding of
mapping defaults must be consistent with the relationship modeling annotation that is specified. For
example, if a many-to-one relationship mapping is specified, it is not permitted to specify a unique key

Jakarta Persistence 29

2.10. Relationship Mapping Defaults

constraint on the foreign key for the relationship.

The persistence provider handles the object/relational mapping of the relationships, including their
loading and storing to the database as specified in the metadata of the entity class, and the referential
integrity of the relationships as specified in the database (e.g., by foreign key constraints).

Note that it is the application that bears responsibility for maintaining the consistency

o of runtime relationships—for example, for insuring that the “one” and the “many”
sides of a bidirectional relationship are consistent with one another when the
application updates the relationship at runtime.

If there are no associated entities for a multi-valued relationship of an entity fetched from the
database, the persistence provider is responsible for returning an empty collection as the value of the
relationship.

2.10. Relationship Mapping Defaults

This section defines the mapping defaults that apply to the use of the OneToOne, OneToMany,
ManyToOne, and ManyToMany relationship modeling annotations. The same mapping defaults apply
when the XML descriptor is used to denote the relationship cardinalities.

2.10.1. Bidirectional OneToOne Relationships
Assuming that:

* Entity A references a single instance of Entity B.
* Entity B references a single instance of Entity A.

* Entity A is specified as the owner of the relationship.
The following mapping defaults apply:

« Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

* Table A contains a foreign key to table B. The foreign key column name is formed as the
concatenation of the following: the name of the relationship property or field of entity A; " _ "; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B and there is a unique key constraint on it.

Example:

30 Jakarta Persistence

2.10. Relationship Mapping Defaults

public class Employee {
private Cubicle assignedCubicle;

public Cubicle getAssignedCubicle() {
return assignedCubicle;

}

public void setAssignedCubicle(Cubicle cubicle) {
this.assignedCubicle = cubicle;

}

/] ...

public class Cubicle {
private Employee residentEmployee;

(mappedBy="assignedCubicle")
public Employee getResidentEmployee() {
return residentEmployee;

}

public void setResidentEmployee(Employee employee) {
this.residentEmployee = employee;

}

/] ...

In this example:

» Entity Employee references a single instance of Entity Cubicle.
 Entity Cubicle references a single instance of Entity Employee.

» Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
 Entity Cubicle is mapped to a table named CUBICLE.

» Table EMPLOYEE contains a foreign key to table CUBICLE. The foreign key column is named
ASSIGNEDCUBICLE_ <PK of CUBICLE>, where <PK of CUBICLE> denotes the name of the primary

Jakarta Persistence 31

2.10. Relationship Mapping Defaults

key column of table CUBICLE. The foreign key column has the same type as the primary key of
CUBICLE, and there is a unique key constraint on it.

2.10.2. Bidirectional ManyToOne / OneToMany Relationships
Assuming that:

* Entity A references a single instance of Entity B.
« Entity B references a collection of Entity A",

* Entity A must be the owner of the relationship.
The following mapping defaults apply:

» Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

» Table A contains a foreign key to table B. The foreign key column name is formed as the
concatenation of the following: the name of the relationship property or field of entity A; " _ "; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B.

Example:

32 Jakarta Persistence

2.10. Relationship Mapping Defaults

public class Employee {
private Department department;

public Department getDepartment() {
return department;

}

public void setDepartment(Department department) {
this.department = department;

}

/] ...

public class Department {
private Collection<Employee> employees = new HashSet();

(mappedBy="department")
public Collection<Employee> getEmployees() {
return employees;

}

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

/] ...

In this example:

» Entity Employee references a single instance of Entity Department.
» Entity Department references a collection of Entity Employee.

» Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
* Entity Department is mapped to a table named DEPARTMENT.

» Table EMPLOYEE contains a foreign key to table DEPARTMENT. The foreign key column is named
DEPARTMENT_ <PK of DEPARTMENT>, where <PK of DEPARTMENT> denotes the name of the

Jakarta Persistence 33

2.10. Relationship Mapping Defaults

primary key column of table DEPARTMENT. The foreign key column has the same type as the
primary key of DEPARTMENT.

2.10.3. Unidirectional Single-Valued Relationships
Assuming that:

* Entity A references a single instance of Entity B.

* Entity B does not reference Entity A.
A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirectional
OneToOne or as a unidirectional ManyToOne relationship.

2.10.3.1. Unidirectional OneToOne Relationships

The following mapping defaults apply:

» Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

» Table A contains a foreign key to table B. The foreign key column name is formed as the
concatenation of the following: the name of the relationship property or field of entity A; " _ "; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B and there is a unique key constraint on it.

Example:

34 Jakarta Persistence

2.10. Relationship Mapping Defaults

public class Employee {
private TravelProfile profile;

public TravelProfile getProfile() {
return profile;

}

public void setProfile(TravelProfile profile) {
this.profile = profile;
}

/] ...

public class TravelProfile {
/] ...
}

In this example:

* Entity Employee references a single instance of Entity TravelProfile.
* Entity TravelProfile does not reference Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
» Entity TravelProfile is mapped to a table named TRAVELPROFILE.

» Table EMPLOYEE contains a foreign key to table TRAVELPROFILE. The foreign key column is
named PROFILE <PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE> denotes the name of
the primary key column of table TRAVELPROFILE. The foreign key column has the same type as the
primary key of TRAVELPROFILE, and there is a unique key constraint on it.

2.10.3.2. Unidirectional ManyToOne Relationships
The following mapping defaults apply:
» Entity A is mapped to a table named A.

« Entity B is mapped to a table named B.

» Table A contains a foreign key to table B. The foreign key column name is formed as the
concatenation of the following: the name of the relationship property or field of entity A; ""; the

Jakarta Persistence 35

2.10. Relationship Mapping Defaults

name of the primary key column in table _B. The foreign key column has the same type as the
primary key of table B.

Example:

public class Employee {
private Address address;

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

/] ...

public class Address {
/] ...

}

In this example:

» Entity Employee references a single instance of Entity Address.
» Entity Address does not reference Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
» Entity Address is mapped to a table named ADDRESS.

» Table EMPLOYEE contains a foreign key to table ADDRESS. The foreign key column is named
ADDRESS_ <PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the primary key
column of table ADDRESS. The foreign key column has the same type as the primary key of
ADDRESS.

2.10.4. Bidirectional ManyToMany Relationships

Assuming that:

36 Jakarta Persistence

2.10. Relationship Mapping Defaults

* Entity A references a collection of Entity B.
* Entity B references a collection of Entity A.

* Entity A is the owner of the relationship.
The following mapping defaults apply:

* Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

* There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following: the
name of the relationship property or field of entity B; " _ "; the name of the primary key column in
table A. The other foreign key column refers to table B and has the same type as the primary key of
table B. The name of this foreign key column is formed as the concatenation of the following: the name
of the relationship property or field of entity A; " _"; the name of the primary key column in table B.

Example:

Jakarta Persistence 37

2.10. Relationship Mapping Defaults

public class Project {
private Collection<Employee> employees;

public Collection<Employee> getEmployees() {
return employees;

}

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

/] ...

public class Employee {
private Collection<Project> projects;

(mappedBy="employees")
public Collection<Project> getProjects() {
return projects;

}

public void setProjects(Collection<Project> projects) {
this.projects = projects;

}

/] ...

In this example:

 Entity Project references a collection of Entity Employee.
» Entity Employee references a collection of Entity Project.

* Entity Project is the owner of the relationship.
The following mapping defaults apply:

* Entity Project is mapped to a table named PROJECT.
» Entity Employee is mapped to a table named EMPLOYEE.

* There is a join table that is named PROJECT_EMPLOYEE (owner name first). This join table has two
foreign key columns. One foreign key column refers to table PROJECT and has the same type as the

38 Jakarta Persistence

2.10. Relationship Mapping Defaults

primary key of PROJECT. The name of this foreign key column is PROJECTS <PK of PROJECT>, where
<PK of PROJECT> denotes the name of the primary key column of table _PROJECT. The other foreign
key column refers to table EMPLOYEE and has the same type as the primary key of EMPLOYEE. The
name of this foreign key column is EMPLOYEES <PK of EMPLOYEE>, where <PK of EMPLOYEE>
denotes the name of the primary key column of table _EMPLOYEE.

2.10.5. Unidirectional Multi-Valued Relationships

Assuming that:

* Entity A references a collection of Entity B.

 Entity B does not reference Entity A.
A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirectional
OneToMany or as a unidirectional ManyToMany relationship.

2.10.5.1. Unidirectional OneToMany Relationships

The following mapping defaults apply:

* Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

* There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following: the
name of entity A; " _ "; the name of the primary key column in table A. The other foreign key column
refers to table B and has the same type as the primary key of table B and there is a unique key
constraint on it. The name of this foreign key column is formed as the concatenation of the following:
the name of the relationship property or field of entity A; " _"; the name of the primary key column
in table B.

Example:

Jakarta Persistence 39

2.10. Relationship Mapping Defaults

public class Employee {
private Collection<AnnualReview> annualReviews;

public Collection<AnnualReview> getAnnualReviews() {
return annualReviews;

}

public void setAnnualReviews(Collection<AnnualReview> annualReviews) {
this.annualReviews = annualReviews;

}

/] ...

public class AnnualReview {
/] ...
}

In this example:

* Entity Employee references a collection of Entity AnnualReview.
» Entity AnnualReview does not reference Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
* Entity AnnualReview is mapped to a table named ANNUALREVIEW.

* There is a join table that is named EMPLOYEE ANNUALREVIEW (owner name first). This join table
has two foreign key columns. One foreign key column refers to table EMPLOYEE and has the same
type as the primary key of EMPLOYEE. This foreign key column is named EMPLOYEE <PK of
EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the primary key column of table
_EMPLOYEE. The other foreign key column refers to table ANNUALREVIEW and has the same type as
the primary key of ANNUALREVIEW. This foreign key column is named ANNUALREVIEWS <PK of
ANNUALREVIEW>, where <PK of ANNUALREVIEW> denotes the name of the primary key column of
table _ANNUALREVIEW. There is a unique key constraint on the foreign key that refers to table
ANNUALREVIEW.

2.10.5.2. Unidirectional ManyToMany Relationships

The following mapping defaults apply:

40 Jakarta Persistence

2.10. Relationship Mapping Defaults

* Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

* There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following: the
name of entity A; " _ "; the name of the primary key column in table A. The other foreign key column
refers to table B and has the same type as the primary key of table B. The name of this foreign key
column is formed as the concatenation of the following: the name of the relationship property or field
of entity A; " _"; the name of the primary key column in table B.

Example:

public class Employee {
private Collection<Patent> patents;

public Collection<Patent> getPatents() {
return patents;

}

public void setPatents(Collection<Patent> patents) {
this.patents = patents;

}

/] ...

public class Patent {
//...
}

In this example:

» Entity Employee references a collection of Entity Patent.
» Entity Patent does not reference Entity Employee.

» Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
* Entity Patent is mapped to a table named PATENT.

Jakarta Persistence 41

2.11. Inheritance

* There is a join table that is named EMPLOYEE_PATENT (owner name first). This join table has two
foreign key columns. One foreign key column refers to table EMPLOYEE and has the same type as
the primary key of EMPLOYEE. This foreign key column is named EMPLOYEE <PK of EMPLOYEE>,
where <PK of EMPLOYEE> denotes the name of the primary key column of table _[EMPLOYEE. The
other foreign key column refers to table PATENT and has the same type as the primary key of PATENT.
This foreign key column is named PATENTS <PK of PATENT>, where <PK of PATENT> denotes the
name of the primary key column of table _PATENT.

2.11. Inheritance

An entity may inherit from another entity class. Entities support inheritance, polymorphic
associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes can be annotated
with the Entity annotation, mapped as entities, and queried for as entities.

Entities can extend non-entity classes and non-entity classes can extend entity classes.

These concepts are described further in the following sections.

2.11.1. Abstract Entity Classes

An abstract class can be specified as an entity. An abstract entity differs from a concrete entity only in
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the target of
queries (which will operate over and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with the Entity annotation or denoted in the XML descriptor as an
entity.

The following example shows the use of an abstract entity class in the entity inheritance hierarchy.

Example: Abstract class as an Entity

42 Jakarta Persistence

2.11. Inheritance

@Entity
@Table(name="EMP")
@Inheritance(strategy=JOINED)
public abstract class Employee {
@Id
protected Integer empId;

@Version
protected Integer version;

@ManyToOne
protected Address address;

/] ...
}

@Entity

@Table(name="FT_EMP")

@DiscriminatorValue("FT")

@PrimaryKeyJoinColumn(name="FT_EMPID")

public class FullTimeEmployee extends Employee {
// Inherit empId, but mapped in this class to FT_EMP.FT_EMPID
// Inherit version mapped to EMP.VERSION
// Inherit address mapped to EMP.ADDRESS fk

// Defaults to FT_EMP.SALARY
protected Integer salary;

/] ...
}

@Entity
@Table(name="PT_EMP")
@DiscriminatorValue("PT")
// PK column is PT_EMP.EMPID due to _PrimaryKeyJoinColumn_ default
public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

/] ...

2.11.2. Mapped Superclasses

An entity may inherit from a superclass that provides persistent entity state and mapping information,
but which is not itself an entity. Typically, the purpose of such a mapped superclass is to define state
and mapping information that is common to multiple entity classes.

Jakarta Persistence 43

2.11. Inheritance

A mapped superclass, unlike an entity, is not queryable and must not be passed as an argument to
EntityManager or Query operations. Persistent relationships defined by a mapped superclass must be
unidirectional.

Both abstract and concrete classes may be specified as mapped superclasses. The MappedSuperclass
annotation (or mapped-superclass XML descriptor element) is used to designate a mapped superclass.

A class designated as a mapped superclass has no separate table defined for it. Its mapping
information is applied to the entities that inherit from it.

A class designated as a mapped superclass can be mapped in the same way as an entity except that the
mappings will apply only to its subclasses since no table exists for the mapped superclass itself. When
applied to the subclasses, the inherited mappings will apply in the context of the subclass tables.
Mapping information can be overridden in such subclasses by using the AttributeOverride and
AssociationOverride annotations or corresponding XML elements.

All other entity mapping defaults apply equally to a class designated as a mapped superclass.
The following example illustrates the definition of a concrete class as a mapped superclass.

Example: Concrete class as a mapped superclass

public class Employee {

protected Integer empId;
protected Integer version;
(name="ADDR")
protected Address address;
public Integer getEmpId() { ... }
public void setEmpId(Integer id) { ... }

public Address getAddress() { ... }

public void setAddress(Address addr) { ... }
+

// Default table is FTEMPLOYEE table

public class FTEmployee extends Employee {
// Inherited empId field mapped to FTEMPLOYEE.EMPID

44 Jakarta Persistence

2.11. Inheritance

// Inherited version field mapped to FTEMPLOYEE.VERSION
// Inherited address field mapped to FTEMPLOYEE.ADDR fk

// Defaults to FTEMPLOYEE.SALARY
protected Integer salary;

public FTEmployee() {}
public Integer getSalary() { ... }

public void setSalary(Integer salary) { ... }
}

@Entity
@Table(name="PT_EMP")
@AssociationOverride(name="address", joincolumns=@JoinColumn(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {
// Inherited empId field mapped to PT_EMP.EMPID
// Inherited version field mapped to PT_EMP.VERSION
// address field mapping overridden to PT_EMP.ADDR_ID fk
@Column(name="WAGE")
protected Float hourlyWage;

public PartTimeEmployee() {}
public Float getHourlyWage() { ... }

public void setHourlyWage(Float wage) { ... }

2.11.3. Non-Entity Classes in the Entity Inheritance Hierarchy

An entity can have a non-entity superclass, which may be either a concrete or abstract class.””

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superclass
is not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting
entity class. This non-persistent state is not managed by the entity manager””. Any annotations on
such superclasses are ignored.

Non-entity classes cannot be passed as arguments to methods of the EntityManager or Query interfaces
I and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.

Example: Non-entity superclass

Jakarta Persistence 45

2.12. Inheritance Mapping Strategies

public class Cart {
protected Integer operationCount; // transient state

public Cart() {
operationCount = 0;

}

public Integer getOperationCount() {
return operationCount;

}

public void incrementOperationCount() {
operationCount++;

}

public class ShoppingCart extends Cart {
Collection<Item> items = new Vector<Item>();

public ShoppingCart() {
super();

}

/] ...

public Collection<Item> getItems() {
return items;

}

public void addItem(Item item) {
items.add(item);
incrementOperationCount();

2.12. Inheritance Mapping Strategies

The mapping of class hierarchies is specified through metadata.

There are three basic strategies that are used when mapping a class or class hierarchy to a relational
database:

* asingle table per class hierarchy

46 Jakarta Persistence

2.12. Inheritance Mapping Strategies

* a joined subclass strategy, in which fields that are specific to a subclass are mapped to a separate
table than the fields that are common to the parent class, and a join is performed to instantiate the
subclass.

* atable per concrete entity class

An implementation is required to support the single table per class hierarchy inheritance mapping
strategy and the joined subclass strategy.

Support for the table per concrete class inheritance mapping strategy is optional in
o this release. Applications that use this mapping strategy will not be portable.

Support for the combination of inheritance strategies within a single entity
inheritance hierarchy is not required by this specification.
2.12.1. Single Table per Class Hierarchy Strategy

In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a column that
serves as a “discriminator column”, that is, a column whose value identifies the specific subclass to
which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities and for
queries that range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific to the
subclasses be nullable.

2.12.2. Joined Subclass Strategy

In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each
subclass is represented by a separate table that contains those fields that are specific to the subclass
(not inherited from its superclass), as well as the column(s) that represent its primary key. The primary
key column(s) of the subclass table serves as a foreign key to the primary key of the superclass table.

This strategy provides support for polymorphic relationships between entities.

It has the drawback that it requires that one or more join operations be performed to instantiate
instances of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries
that range over the class hierarchy likewise require joins.

2.12.3. Table per Concrete Class Strategy

In this mapping strategy, each class is mapped to a separate table. All properties of the class, including
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:

Jakarta Persistence 47

2.13. Naming of Database Objects

* It provides poor support for polymorphic relationships.

* It typically requires that SQL UNION queries (or a separate SQL query per subclass) be issued for
queries that are intended to range over the class hierarchy:.

2.13. Naming of Database Objects

Many annotations and annotation elements contain names of database objects or assume default
names for database objects.

This specification requires the following with regard to the interpretation of the names referencing
database objects. These names include the names of tables, columns, and other database elements.
Such names also include names that result from defaulting (e.g., a table name that is defaulted from an
entity name or a column name that is defaulted from a field or property name).

By default, the names of database objects must be treated as undelimited identifiers and passed to the
database as such.

For example, assuming the use of an English locale, the following must be passed to the database as
undelimited identifers so that they will be treated as equivalent for all databases that comply with the
SQL Standard’s requirements for the treatment of “regular identifiers” (undelimited identifiers) and
“delimited identifiers” [2]:

(name="Customer")
(name="customer")
(name="cUsTomer")

Similarly, the following must be treated as equivalent:

(name="CUSTOMER")
Customer customer;

(name="customer")
Customer customer;

Customer customer;

To specify delimited identifiers, one of the following approaches must be used:

* It is possible to specify that all database identifiers in use for a persistence unit be treated as
delimited identifiers by specifying the <delimited-identifiers/> element within the persistence-unit-
defaults element of the object/relational xml mapping file. If the <delimited-identifiers/> element is
specified, it cannot be overridden.

« It is possible to specify on a per-name basis that a name for a database object is to be interpreted as

48 Jakarta Persistence

2.13. Naming of Database Objects

a delimited identifier as follows:

- Using annotations, a name is specified as a delimited identifier by enclosing the name within
double quotes, whereby the inner quotes are escaped, e.g., @Table(name="\"customer\"").

- When using XML, a name is specified as a delimited identifier by use of double quotes, e.g.,
<table name=""customer""/> %

The following annotations contain elements whose values correspond to names of database identifiers
and for which the above rules apply, including when their use is nested within that of other
annotations:

EntityResult(discriminatorColumn element)

FieldResult(column element)

ColumnResult(name element)

CollectionTable(name, catalog, schema elements)

Column(name, columnDefinition, table elements)

DiscriminatorColumn(name, columnDefinition elements)

ForeignKey(name, foreignKeyDefinition elements)

Index(name, columnList elements)

JoinColumn(name, referencedColumnName, columnDefinition, table elements)
JoinTable(name, catalog, schema elements)

MapKeyColumn(name, columnDefinition, table elements)

MapKeyJoinColumn(name, referencedColumnName, columnDefinition, table elements)
NamedStoredProcedureQuery(procedureName element)

OrderColumn(name, columnDefinition elements)

PrimaryKeyJoinColumn(name, referencedColumnName, columnDefinition elements)
SecondaryTable(name, catalog, schema elements)
SequenceGenerator(sequenceName, catalog, schema elements)
StoredProcedureParameter(name element)

Table(name, catalog, schema elements)

TableGenerator(table, catalog, schema, pkColumnName, valueColumnName elements)

UniqueConstraint(name, columnNames elements)

The following XML elements and types contain elements or attributes whose values correspond to
names of database identifiers and for which the above rules apply:

entity-mappings(schema, catalog elements)

persistence-unit-defaults(schema, catalog elements)

Jakarta Persistence 49

2.13. Naming of Database Objects

collection-table(name, catalog, schema attributes)

e column(name, table, column-definition attributes)

* column-result(name attribute)

o discriminator-column(name, column-definition attributes)

* entity-result(discriminator-column attribute)

* field-result(column attribute)

* foreign-key(name, foreign-key-definition attributes)

* index(name attribute, column-list element)

* join-column(name, referenced-column-name, column-definition, table attributes)

* join-table(name, catalog, schema attributes)

* map-key-column(name, column-definition, table attributes)

* map-key-join-column(name, referenced-column-name, column-definition, table attributes)
* named-stored-procedure-query(procedure-name attribute)

e order-column(name, column-definition attributes)

* primary-key-join-column(name, referenced-column-name, column-definition attributes)
» secondary-table(name, catalog, schema attributes)

* sequence-generator(sequence-name, catalog, schema attributes)

* stored-procedure-parameter(name attribute)

* table(name, catalog, schema attributes)

* table-generator(table, catalog, schema, pk-column-name, value-column-name attributes)

* unique-constraint(name attribute, column-name element)

[1] The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In
Jakarta EE environments, this may be the Jakarta EE container or a third-party persistence provider implementation
integrated with it.

[2] Specifically, if get X is the name of the getter method and set X is the name of the setter method, where X is a string,
the name of the persistent property is defined by the result of java.beans.Introspector.decapitalize(X).

[3] Portable applications should not expect the order of a list to be maintained across persistence contexts unless the
OrderColumn construct is used or unless the OrderBy construct is used and the modifications to the list observe the
specified ordering.

[4] Lazy fetching is a hint to the persistence provider and can be specified by means of the Basic, OneToOne, OneToMany,
ManyToOne, ManyToMany, and ElementCollection annotations and their XML equivalents. See Chapter 11.

[5] Note that an instance of Calendar must be fully initialized for the type that it is mapped to.

[6] The use of XML as an alternative and the interaction between Java language annotations and XML elements in
defining default and explicit access types is described in Chapter 12.

[7] These annotations must not be applied to the setter methods.

[8] It is permitted (but redundant) to place Access(FIELD) on a persistent field whose class has field access type or
Access(PROPERTY) on a persistent property whose class has property access type. It is not permitted to specify a field as
Access(PROPERTY) or a property as Access(FIELD). Note that Access(PROPERTY) must not be placed on the setter
methods.

50 Jakarta Persistence

2.13. Naming of Database Objects

[9] In general, however, approximate numeric types (e.g., floating point types) should never be used in primary keys.
[10] This includes not changing the value of a mutable type that is primary key or an attribute of a composite primary
key.

[11] The implementation may, but is not required to, throw an exception. Portable applications must not rely on any
such specific behavior.

[12] If the application does not set the primary key attribute corresponding to the relationship, the value of that
attribute may not be available until after the entity has been flushed to the database.

[13] Note that it is correct to observe the first rule as an alternative in this case.

[14] Note that the parent’s primary key might be represented as either an embedded id or as an id class.

[15] Note that the use of PrimaryKeyJoinColumn instead of MapsId would result in the same mapping in this example.
Use of Mapsld is preferred for the mapping of derived identities.

[16] Direct or indirect circular containment dependencies among embeddable classes are not permitted.

[17] An entity cannot have a unidirectional relationship to the embeddable class of another entity (or itself).

[18] Note that when an embeddable instance is used as a map key, these attributes represent its identity. Changes to
embeddable instances used as map keys have undefined behaviour and should be avoided.

[19] For associations of type java.util. Map, target type refers to the type that is the Map value.

[20] If the parent is detached or new or was previously removed before the orphan was associated with it, the remove
operation is not applied to the entity being orphaned.

[21] When the relationship is modeled as a java.util. Map, “Entity B references a collection of Entity A” means that Entity
B references a map collection in which the type of the Map value is Entity A. The map key may be a basic type,
embeddable class, or an entity.

[22] The superclass must not be an embeddable class or id class.

[23] If a transaction-scoped persistence context is used, it is not required to be retained across transactions.

[24] This includes instances of a non-entity class that extends an entity class.

[25] If <delimited-identifiers> is specified and individual annotations or XML elements or attributes use escaped double
quotes, the double-quotes appear in the name of the database identifier.

Jakarta Persistence 51

3.1. EntityManager

Chapter 3. Entity Operations

This chapter describes the use of the EntityManager API to manage the entity instance lifecycle and the
use of the Query API to retrieve and query entities and their persistent state.

3.1. EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a set of
entity instances in which for any persistent entity identity there is a unique entity instance. Within the
persistence context, the entity instances and their lifecycle are managed. The EntityManager interface
defines the methods that are used to interact with the persistence context. The EntityManager API is
used to create and remove persistent entity instances, to find persistent entities by primary key, and to
query over persistent entities.

The set of entities that can be managed by a given EntityManager instance is defined by a persistence
unit. A persistence unit defines the set of all classes that are related or grouped by the application, and
which must be colocated in their mapping to a single database.

Section 3.1 defines the EntityManager interface. The entity instance lifecycle is described in Section 3.2.
The relationships between entity managers and persistence contexts are described in Section 3.3 and
in further detail in Chapter 7. Section 3.4 describes mechanisms for concurrency control and locking.
Section 3.5 describes entity listeners and lifecycle callback methods for entities. Section 3.6 describes
support for automatic use of Bean Validation. Section 3.7 describes the use of entity graphs to control
the path and boundaries of find and query operations. Section 3.7 describes mechanisms for defining
conversions between entity and database representations for attributes of basic types. Section 3.9
describes mechanisms for portable second-level cache configuration. The Query, TypedQuery,
StoredProcedureQuery, and related interfaces are described in Section 3.10. Section 3.11 provides a
summary of exceptions. The Jakarta Persistence query language is defined in Chapter 4 and the APIs
for the construction of Criteria queries in Chapter 6. The definition of persistence units is described in
Chapter 8.

3.1.1. EntityManager Interface

package jakarta.persistence;

import java.util.Map;

import java.util.list;

import jakarta.persistence.metamodel.Metamodel;
import jakarta.persistence.criteria.CriteriaBuilder;
import jakarta.persistence.criteria.CriteriaQuery;
import jakarta.persistence.criteria.Criterialpdate;
import jakarta.persistence.criteria.CriteriaDelete;

/**

52 Jakarta Persistence

Interface used to interact with the persistence context.

<p> An <code>EntityManager</code> instance is associated with

a persistence context. A persistence context is a set of entity
instances in which for any persistent entity identity there is

a unique entity instance. Within the persistence context, the
entity instances and their lifecycle are managed.

The <code>EntityManager</code> API is used

to create and remove persistent entity instances, to find entities
by their primary key, and to query over entities.

<p> The set of entities that can be managed by a given
<code>EntityManager</code> instance is defined by a persistence
unit. A persistence unit defines the set of all classes that are
related or grouped by the application, and which must be
colocated in their mapping to a single database.

@see Query

@see TypedQuery

@see CriteriaQuery

@see PersistenceContext
@see StoredProcedureQuery

EE R R R B R R R R N T N R N N N I T I

@since 1.0
*/
public interface EntityManager {

Make an instance managed and persistent.
@param entity entity instance
@throws EntityExistsException if the entity already exists.

be thrown when the persist operation is invoked, or the

3.1. EntityManager

*
*
*
* (If the entity already exists, the <code>EntityExistsException</code> may
*
*

<code>EntityExistsException</code> or another <code>PersistenceException</code>

may be
* thrown at flush or commit time.)
* @throws IllegalArgumentException if the instance is not an
* entity
* @throws TransactionRequiredException if there is no transaction when
* invoked on a container-managed entity manager of that is of type
*

<code>PersistenceContextType.TRANSACTION</code>

public void persist(Object entity);

/**

* Merge the state of the given entity into the
* current persistence context.
* @param entity entity instance

Jakarta Persistence 53

3.1. EntityManager

* @return the managed instance that the state was merged to

* @throws IllegalArgumentException if instance is not an

* entity or is a removed entity

* @throws TransactionRequiredException if there is no transaction when

* invoked on a container-managed entity manager of that is of type
* <code>PersistenceContextType.TRANSACTION</code>

*/

public <T> T merge(T entity);

/**

* Remove the entity instance.

* @param entity entity instance

* @throws IllegalArgumentException if the instance is not an

* entity or is a detached entity

* @throws TransactionRequiredException if invoked on a

* container-managed entity manager of type

* <code>PersistenceContextType.TRANSACTION</code> and there is
* no transaction

*/

public void remove(Object entity);

/**

* Find by primary key.

* Search for an entity of the specified class and primary key.
* If the entity instance is contained in the persistence context,
* it is returned from there.

* @param entityClass entity class

* @param primaryKey primary key

* @return the found entity instance or null if the entity does
* not exist

* @throws IllegalArgumentException if the first arqument does
* not denote an entity type or the second argument is
* is not a valid type for that entity's primary key or
*

is null
*/
public <T> T find(Class<T> entityClass, Object primaryKey);

/**

* Find by primary key, using the specified properties.

* Search for an entity of the specified class and primary key.
* If the entity instance is contained in the persistence

* context, it is returned from there.

* If a vendor-specific property or hint is not recognized,

* it is silently ignored.

* @param entityClass entity class

* @param primaryKey primary key

* @param properties standard and vendor-specific properties
*

and hints

54 Jakarta Persistence

3.1. EntityManager

* @return the found entity instance or null if the entity does
* not exist

* @throws IllegalArgumentException if the first argument does
* not denote an entity type or the second argument is
* is not a valid type for that entity's primary key or

k3 is null
* @since 2.0
*/

public <T> T find(Class<T> entityClass, Object primaryKey,
Map<String, Object> properties);

/**

Find by primary key and lock.
Search for an entity of the specified class and primary key
and lock it with respect to the specified lock type.
If the entity instance is contained in the persistence context,
it is returned from there, and the effect of this method is
the same as if the lock method had been called on the entity.
<p> If the entity is found within the persistence context and the
lock mode type is pessimistic and the entity has a version
attribute, the persistence provider must perform optimistic
version checks when obtaining the database lock. If these
checks fail, the <code>OptimisticLockException</code> will be thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

<1i> the <code>PessimisticlLockException</code> will be thrown if the database
locking failure causes transaction-level rollback
 the <code>LockTimeoutException</code> will be thrown if the database
locking failure causes only statement-level rollback

@param entityClass entity class
@param primaryKey primary key
@param lockMode 1lock mode
@return the found entity instance or null if the entity does
not exist
@throws I1legalArgumentException if the first argument does
not denote an entity type or the second argument is
not a valid type for that entity's primary key or
is null
@throws TransactionRequiredException if there is no
transaction and a lock mode other than <code>NONE</code> is
specified or if invoked on an entity manager which has
not been joined to the current transaction and a lock
mode other than <code>NONE</code> is specified
@throws OptimisticLockException if the optimistic version
check fails
@throws PessimisticLockException if pessimistic locking

EEE R T R R N N I N R RN N S R TR SR N N SN N N SR R SR SN N N R R N SR NN R

Jakarta Persistence 55

3.1. EntityManager

fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call
is made

@since 2.0

* 0% % * X X

*/
public <T> T find(Class<T> entityClass, Object primaryKey,
LockModeType lockMode);

/**

Find by primary key and lock, using the specified properties.
Search for an entity of the specified class and primary key
and lock it with respect to the specified lock type.
If the entity instance is contained in the persistence context,
it is returned from there.
<p> If the entity is found
within the persistence context and the lock mode type
is pessimistic and the entity has a version attribute, the
persistence provider must perform optimistic version checks
when obtaining the database lock. If these checks fail,
the <code>OptimisticLockException</code> will be thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

 the <code>PessimisticLockException</code> will be thrown if the database
locking failure causes transaction-level rollback
 the <code>LockTimeoutException</code> will be thrown if the database
locking failure causes only statement-level rollback

<p>If a vendor-specific property or hint is not recognized,
it is silently ignored.
<p>Portable applications should not rely on the standard timeout
hint. Depending on the database in use and the locking
mechanisms used by the provider, the hint may or may not
be observed.
@param entityClass entity class
@param primaryKey primary key
@param lockMode 1lock mode
@param properties standard and vendor-specific properties

and hints
@return the found entity instance or null if the entity does

not exist
@throws IllegalArgumentException if the first arqument does

not denote an entity type or the second argument is

not a valid type for that entity's primary key or

is null
@throws TransactionRequiredException if there is no

EE I T T . T R I R R R R B R N T R R T R I N R N R B R T R T R

56 Jakarta Persistence

3.1. EntityManager

transaction and a lock mode other than <code>NONE</code> is
specified or if invoked on an entity manager which has
not been joined to the current transaction and a lock
mode other than <code>NONE</code> is specified

@throws OptimisticLockException if the optimistic version
check fails

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call
is made

@since 2.0

EoRE I R R R S T R R R

*/

public <T> T find(Class<T> entityClass, Object primaryKey,
LockModeType lockMode,
Map<String, Object> properties);

/**

* Get an instance, whose state may be lazily fetched.

* If the requested instance does not exist in the database,

* the <code>EntityNotFoundException</code> is thrown when the instance
* state is first accessed. (The persistence provider runtime is

* permitted to throw the <code>EntityNotFoundException</code> when
* <code>getReference</code> is called.)

* The application should not expect that the instance state will

* be available upon detachment, unless it was accessed by the

* gpplication while the entity manager was open.

* @param entityClass entity class

* @param primaryKey primary key

* @return the found entity instance

* @throws IllegalArgumentException if the first argument does

* not denote an entity type or the second argument is

* not a valid type for that entity's primary key or

* is null

* @throws EntityNotFoundException if the entity state

*

cannot be accessed

*/

public <T> T getReference((Class<T> entityClass,
Object primaryKey);

/**

Synchronize the persistence context to the

underlying database.

@throws TransactionRequiredException if there is
no transaction or if the entity manager has not been
joined to the current transaction

@throws PersistenceException if the flush fails

* 0% F X Xk

Jakarta Persistence 57

3.1. EntityManager

*/
public void flush();

/**

* Set the flush mode that applies to all objects contained
* in the persistence context.

* @param flushMode flush mode

*/

public void setFlushMode(FlushModeType flushMode);

/**

* Get the flush mode that applies to all objects contained
* in the persistence context.

* @return flushMode

*/

public FlushModeType getFlushMode();

/**

Lock an entity instance that is contained in the persistence
context with the specified lock mode type.
<p>If a pessimistic lock mode type is specified and the entity
contains a version attribute, the persistence provider must
also perform optimistic version checks when obtaining the
database lock. If these checks fail, the
<code>0OptimisticLockException</code> will be thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

<1i> the <code>PessimisticlLockException</code> will be thrown if the database
locking failure causes transaction-level rollback
 the <code>LockTimeoutException</code> will be thrown if the database
locking failure causes only statement-level rollback

@param entity entity instance
@param lockMode Tlock mode
@throws IllegalArgumentException if the instance is not an
entity or is a detached entity
@throws TransactionRequiredException if there is no
transaction or if invoked on an entity manager which
has not been joined to the current transaction
@throws EntityNotFoundException if the entity does not exist
in the database when pessimistic locking 1is
performed
@throws OptimisticLockException if the optimistic version
check fails
@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and

E R R R R R R R R R R N N R R R R N N N N R R N S S N T o

58 Jakarta Persistence

*

* @throws
*

*/

3.1. EntityManager

only the statement is rolled back
PersistenceException if an unsupported lock call
is made

public void lock(Object entity, LockModeType lockMode);

/**

Lock an
context
propert
<p>If a
contain
also pe

<code>0
<p>If t

 th
lock
 th
lock

<p>If a
it is s
<p>Port
mechani
be obse
@param
@param
@param

@throws

@throws

@throws

@throws
@throws

@throws

E O I R T T R T B R T R R N B . S T R N N I N N I SR R R N R T N S N R

@throws

entity instance that is contained in the persistence
with the specified lock mode type and with specified
ies.

pessimistic lock mode type is specified and the entity
s a version attribute, the persistence provider must
rform optimistic version checks when obtaining the

database lock. If these checks fail, the

ptimisticLockException</code> will be thrown.
he lock mode type is pessimistic and the entity instance

is found but cannot be locked:

e <code>PessimisticLockException</code> will be thrown if the database
ing failure causes transaction-level rollback

e <code>LockTimeoutException</code> will be thrown if the database

ing failure causes only statement-level rollback

vendor-specific property or hint is not recognized,
ilently ignored.
able applications should not rely on the standard timeout

hint. Depending on the database in use and the locking

sms used by the provider, the hint may or may not
rved.
entity entity instance
lockMode Tlock mode
properties standard and vendor-specific properties
and hints
I1legalArgumentException if the instance is not an
entity or is a detached entity
TransactionRequiredException if there is no
transaction or if invoked on an entity manager which
has not been joined to the current transaction
EntityNotFoundException if the entity does not exist
in the database when pessimistic locking is
performed
OptimisticLockException if the optimistic version
check fails
PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
LockTimeoutException if pessimistic locking fails and
only the statement is rolled back
PersistenceException if an unsupported lock call

Jakarta Persistence 59

3.1. EntityManager

k3 is made
* @since 2.0
*/

public void lock(Object entity, LockModeType lockMode,
Map<String, Object> properties);

/**

* Refresh the state of the instance from the database,

* overwriting changes made to the entity, if any.

* @param entity entity instance

* @throws IllegalArqumentException if the instance is not
* an entity or the entity is not managed

* @throws TransactionRequiredException if there is no

* transaction when invoked on a container-managed
* entity manager of type <code>PersistenceContextType.TRANSACTION</code>
* @throws EntityNotFoundException if the entity no longer
* exists in the database

*/

public void refresh(Object entity);

/**

Refresh the state of the instance from the database, using
the specified properties, and overwriting changes made to
the entity, if any.
<p> If a vendor-specific property or hint is not recognized,
it is silently ignored.
@param entity entity instance
@param properties standard and vendor-specific properties
and hints
@throws IllegalArgumentException if the instance is not
an entity or the entity is not managed
@throws TransactionRequiredException if there is no
transaction when invoked on a container-managed
entity manager of type <code>PersistenceContextType.TRANSACTION</code>
@throws EntityNotFoundException if the entity no longer
exists in the database
@since 2.0

* 0% %k F X % X X X X X X X X X *

*/
public void refresh(Object entity,
Map<String, Object> properties);

/**

Refresh the state of the instance from the database,
overwriting changes made to the entity, if any, and

lock it with respect to given lock mode type.

<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

* 0% F X Xk

60 Jakarta Persistence

3.1. EntityManager

<1i> the <code>PessimisticLockException</code> will be thrown if the database
locking failure causes transaction-level rollback
<1i> the <code>LockTimeoutException</code> will be thrown if the
database locking failure causes only statement-level
rollback.

@param entity entity instance
@param lockMode 1lock mode
@throws IllegalArgumentException if the instance is not
an entity or the entity is not managed
@throws TransactionRequiredException if invoked on a
container-managed entity manager of type
<code>PersistenceContextType.TRANSACTION</code> when there is
no transaction; if invoked on an extended entity manager when
there is no transaction and a lock mode other than <code>NONE</code>
has been specified; or if invoked on an extended entity manager
that has not been joined to the current transaction and a
lock mode other than <code>NONE</code> has been specified
@throws EntityNotFoundException if the entity no longer exists
in the database
@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back
@throws PersistenceException if an unsupported lock call
is made
@since 2.0

L B R N R R R S R R SR R S S R N R R . S

*/
public void refresh(Object entity, LockModeType lockMode);

/**

* Refresh the state of the instance from the database,

* overwriting changes made to the entity, if any, and

* lock it with respect to given lock mode type and with

* specified properties.

* <p>If the lock mode type is pessimistic and the entity instance

* is found but cannot be locked:

*

* <1i> the <code>PessimisticLockException</code> will be thrown if the database
* locking failure causes transaction-level rollback

* <1i> the <code>LockTimeoutException</code> will be thrown if the database
* locking failure causes only statement-level rollback

*

* <p>If a vendor-specific property or hint is not recognized,

* it is silently ignored.

* <p>Portable applications should not rely on the standard timeout

* hint. Depending on the database in use and the locking

*

mechanisms used by the provider, the hint may or may not

Jakarta Persistence 61

3.1. EntityManager

be observed.
@param entity entity instance
@param lockMode 1lock mode
@param properties standard and vendor-specific properties

and hints
@throws IllegalArgumentException if the instance is not

an entity or the entity is not managed
@throws TransactionRequiredException if invoked on a

container-managed entity manager of type

<code>PersistenceContextType.TRANSACTION</code> when there is

no transaction; if invoked on an extended entity manager when

there is no transaction and a lock mode other than <code>NONE</code>

has been specified; or if invoked on an extended entity manager

that has not been joined to the current transaction and a

lock mode other than <code>NONE</code> has been specified
@throws EntityNotFoundException if the entity no longer exists

in the database

@throws PessimisticLockException if pessimistic locking fails

and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and

only the statement is rolled back
@throws PersistenceException if an unsupported lock call

is made

@since 2.0

E B R I R T R R N SR R N S N . SR R N SN R N S

*/
public void refresh(Object entity, LockModeType lockMode,
Map<String, Object> properties);

/**

* (lear the persistence context, causing all managed

* entities to become detached. Changes made to entities that
* have not been flushed to the database will not be

* persisted.

*/

public void clear();

/'k'k

* Remove the given entity from the persistence context, causing
* a managed entity to become detached. Unflushed changes made
* to the entity if any (including removal of the entity),

* will not be synchronized to the database. Entities which

* previously referenced the detached entity will continue to

* reference it.

* @param entity entity instance

* @throws IllegalArgumentException if the instance is not an

* entity

* @since 2.0

*
~

62 Jakarta Persistence

3.1. EntityManager

public void detach(Object entity);

/'k*

* Check if the instance is a managed entity instance belonging

* to the current persistence context.

* @param entity entity instance

@return boolean indicating if entity is in persistence context
* @throws IllegalArgumentException if not an entity

*/

public boolean contains(Object entity);

*

/**

Get the current lock mode for the entity instance.

@param entity entity instance

@return lock mode

@throws TransactionRequiredException if there is no
transaction or if the entity manager has not been
joined to the current transaction

@throws IllegalArgumentException if the instance is not a

* 0% % * X X

*

* managed entity and a transaction is active
* @since 2.0
*/

public LockModeType getLockMode(Object entity);

/'k'k

* Set an entity manager property or hint.

* If a vendor-specific property or hint is not recognized, it is
* silently ignored.

* @param propertyName name of property or hint

*

@param value value for property or hint
@throws IllegalArgumentException if the second arqument is

*

* not valid for the implementation
* @since 2.0
*/

public void setProperty(String propertyName, Object value);

/'k'k

Get the properties and hints and associated values that are in effect
for the entity manager. Changing the contents of the map does

not change the configuration in effect.

@return map of properties and hints in effect for entity manager
@since 2.0

* X %k X X

*
/
public Map<String, Object> getProperties();

/**

* Create an instance of <code>Query</code> for executing a
* Jakarta Persistence query language statement.

Jakarta Persistence 63

3.1. EntityManager

@param qlString a Jakarta Persistence query string

@return the new query instance

@throws IllegalArgumentException if the query string is
found to be invalid

* X % F

*/
public Query createQuery(String qlString);

/'k'k

Create an instance of <code>TypedQuery</code> for executing a
criteria query.

@param criteriaQuery a criteria query object

@return the new query instance

* X ok

*

* @throws IllegalArgumentException if the criteria query is
* found to be invalid

* @since 2.0

*/

public <T> TypedQuery<T> createQuery(CriteriaQuery<T> criteriaQuery);

/**

* Create an instance of <code>Query</code> for executing a criteria
* update query.

* @param updateQuery a criteria update query object

*

@return the new query instance
@throws IllegalArgumentException if the update query is

*

k3 found to be invalid
* @since 2.1
*/

public Query createQuery(CriterialUpdate updateQuery);

/**

* Create an instance of <code>Query</code> for executing a criteria
delete query.
@param deleteQuery a criteria delete query object
@return the new query instance
@throws IllegalArgumentException if the delete query is
found to be invalid
* @since 2.1
*/
public Query createQuery(CriteriaDelete deleteQuery);

* X % *

*

/**

* Create an instance of <code>TypedQuery</code> for executing a
Jakarta Persistence query language statement.

The select list of the query must contain only a single

item, which must be assignable to the type specified by

the <code>resultClass</code> argument.

@param qlString a Jakarta Persistence query string

@param resultClass the type of the query result

* X % * X

*

64 Jakarta Persistence

3.1. EntityManager

* @return the new query instance

* @throws IllegalArgumentException if the query string is found
* to be invalid or if the query result is found to

* not be assignable to the specified type

* @since 2.0

*/
public <T> TypedQuery<T> createQuery(String qlString, Class<T> resultClass);

/**

Create an instance of <code>Query</code> for executing a named query
(in the Jakarta Persistence query language or in native SQL).
@param name the name of a query defined in metadata
@return the new query instance
@throws IllegalArgumentException if a query has not been
defined with the given name or if the query string is
found to be invalid

* 0% X F X X *

*/
public Query createNamedQuery(String name);

/'k*

* Create an instance of <code>TypedQuery</code> for executing a
* Jakarta Persistence query language named query.

* The select list of the query must contain only a single

* jtem, which must be assignable to the type specified by

* the <code>resultClass</code> argument.

* @param name the name of a query defined in metadata

* @param resultClass the type of the query result

* @return the new query instance

* @throws IllegalArgumentException if a query has not been

* defined with the given name or if the query string is
* found to be invalid or if the query result is found to
* not be assignable to the specified type

* @since 2.0

*/

public <T> TypedQuery<T> createNamedQuery(String name, Class<T> result(Class);

/'k'k

Create an instance of <code>Query</code> for executing

a native SQL statement, e.g., for update or delete.

If the query is not an update or delete query, query
execution will result in each row of the SQL result
being returned as a result of type Object[] (or a result
of type Object if there is only one column in the select
list.) Column values are returned in the order of their
appearance in the select list and default JDBC type
mappings are applied.

@param sqlString a native SQL query string

@return the new query instance

* 0% kX X X X X X X X

Jakarta Persistence 65

3.1. EntityManager

*/
public Query createNativeQuery(String sqlString);

/**

* Create an instance of <code>Query</code> for executing

* a3 native SQL query.

* @param sqlString a native SQL query string

* @param resultClass the class of the resulting instance(s)

* @return the new query instance

*/

public Query createNativeQuery(String sqlString, Class result(Class);

/'k'k

Create an instance of <code>Query</code> for executing

a native SQL query.

@param sqlString a native SQL query string

@param resultSetMapping the name of the result set mapping
@return the new query instance

* X %X * X

*
/
public Query createNativeQuery(String sqlString, String resultSetMapping);

/**

* Create an instance of <code>StoredProcedureQuery</code> for executing a
* stored procedure in the database.

<p>Parameters must be registered before the stored procedure can

be executed.

<p>If the stored procedure returns one or more result sets,

any result set will be returned as a list of type Object[].

@param name name assigned to the stored procedure query

in metadata

@return the new stored procedure query instance

* @throws IllegalArqumentException if a query has not been

* defined with the given name

* @since 2.1

*/

public StoredProcedureQuery createNamedStoredProcedureQuery(String name);

* 0% % * X X

*

/**

* Create an instance of <code>StoredProcedureQuery</code> for executing a
* stored procedure in the database.

* <p>Parameters must be registered before the stored procedure can

*

be executed.

<p>If the stored procedure returns one or more result sets,
any result set will be returned as a list of type Object[].
@param procedureName name of the stored procedure in the
database

@return the new stored procedure query instance

@throws IllegalArgumentException if a stored procedure of the

* X % * X

*

66 Jakarta Persistence

3.1. EntityManager

* given name does not exist (or the query execution will

* fail)

* @since 2.1

*/

public StoredProcedureQuery createStoredProcedureQuery(String procedureName);

/**

* Create an instance of <code>StoredProcedureQuery</code> for executing a
* stored procedure in the database.

* <p>Parameters must be registered before the stored procedure can

*

be executed.
<p>The <code>resultClass</code> arguments must be specified in the order in

*

* which the result sets will be returned by the stored procedure
* qnvocation.

* @param procedureName name of the stored procedure in the

* database

* @param resultClasses classes to which the result sets

* produced by the stored procedure are to

* be mapped

* @return the new stored procedure query instance

* @throws IllegalArgumentException if a stored procedure of the
* given name does not exist (or the query execution will

* fail)

* @since 2.1

*/
public StoredProcedureQuery createStoredProcedureQuery(
String procedureName, Class... resultClasses);

/**

* Create an instance of <code>StoredProcedureQuery</code> for executing a
stored procedure in the database.

*

* <p>Parameters must be registered before the stored procedure can
* be executed.

* <p>The <code>resultSetMapping</code> arqguments must be specified in the order
* in which the result sets will be returned by the stored

* procedure invocation.

* @param procedureName name of the stored procedure in the

* database

* @param resultSetMappings the names of the result set mappings

* to be used in mapping result sets

* returned by the stored procedure

*

@return the new stored procedure query instance
@throws IllegalArgumentException if a stored procedure or

*

* result set mapping of the given name does not exist
k3 (or the query execution will fail)
*/

public StoredProcedureQuery createStoredProcedureQuery(
String procedureName, String... resultSetMappings);

Jakarta Persistence 67

3.1. EntityManager

/**

* 0% % F X % F X X

*/
pub

/**

* X X F X X

*/
pub

/'k'k

* 0% ok X X X X X X X X

*/
pub

/**

* % % * X

*/
pub

Indicate to the entity manager that a JTA transaction is
active and join the persistence context to it.
<p>This method should be called on a JTA application
managed entity manager that was created outside the scope
of the active transaction or on an entity manager of type
<code>SynchronizationType.UNSYNCHRONIZED</code> to associate
it with the current JTA transaction.
@throws TransactionRequiredException if there is

no transaction

lic void joinTransaction();

Determine whether the entity manager is joined to the
current transaction. Returns false if the entity manager
is not joined to the current transaction or if no
transaction is active

@return boolean

@since 2.1

1lic boolean isJoinedToTransaction();

Return an object of the specified type to allow access to the
provider-specific API. If the provider's <code>EntityManager</code>
implementation does not support the specified class, the
<code>PersistenceException</code> is thrown.
@param cls the class of the object to be returned. This is
normally either the underlying <code>EntityManager</code> implementation
class or an interface that it implements.
@return an instance of the specified class
@throws PersistenceException if the provider does not

support the call
@since 2.0

lic <T> T unwrap(Class<T> cls);

Return the underlying provider object for the <code>EntityManager</code>,
if available. The result of this method is implementation

specific.

<p>The <code>unwrap</code> method is to be preferred for new applications.
@return underlying provider object for EntityManager

lic Object getDelegate();

68 Jakarta Persistence

3.1. EntityManager

/'k'k

Close an application-managed entity manager.
After the close method has been invoked, all methods
on the <code>EntityManager</code> instance and any
<code>Query</code>, <code>TypedQuery</code>, and
<code>StoredProcedureQuery</code> objects obtained from
it will throw the <code>IllegalStateException</code>
except for <code>getProperties</code>,
<code>getTransaction</code>, and <code>isOpen</code> (which will return false).
If this method is called when the entity manager is
joined to an active transaction, the persistence
context remains managed until the transaction completes.
@throws I1legalStateException if the entity manager

is container-managed

EOREE B R R R T T R I R

*/
public void close();

/**

* Determine whether the entity manager is open.

* @return true until the entity manager has been closed
*/

public boolean 1isOpen();

/**

* Return the resource-level <code>EntityTransaction</code> object.

* The <code>EntityTransaction</code> instance may be used serially to
* begin and commit multiple transactions.

* @return EntityTransaction instance

* @throws IllegalStateException if invoked on a JTA

*

entity manager
*/
public EntityTransaction getTransaction();

/**

Return the entity manager factory for the entity manager.

@return EntityManagerFactory instance

@throws IllegalStateException if the entity manager has
been closed

@since 2.0

* 0% kX X

*/
public EntityManagerFactory getEntityManagerFactory();

/**

* Return an instance of <code>CriteriaBuilder</code> for the creation of
* <code>CriteriaQuery</code> objects.

* @return CriteriaBuilder instance

* @throws IllegalStateException if the entity manager has

*

been closed

Jakarta Persistence 69

3.1. EntityManager

* @since 2.0
*/
public CriteriaBuilder getCriteriaBuilder();

/**
* Return an instance of <code>Metamodel</code> interface for access to the
metamodel of the persistence unit.
@return Metamodel instance
@throws IllegalStateException if the entity manager has
been closed
@since 2.0

*

*
*
*
*

*
/
public Metamodel getMetamodel();

/**

Return a mutable EntityGraph that can be used to dynamically create an
EntityGraph.

@param rootType class of entity graph

* @return entity graph

* @since 2.1

*/

public <T> EntityGraph<T> createEntityGraph(Class<T> rootType);

* X ok

/**

* Return a mutable copy of the named EntityGraph. If there

* is no entity graph with the specified name, null is returned.
* @param graphName name of an entity graph

* @return entity graph

* @since 2.1

*/

public EntityGraph<?> createEntityGraph(String graphName);

/**

* Return a named EntityGraph. The returned EntityGraph

should be considered immutable.

* @param graphName name of an existing entity graph

* @return named entity graph

* @throws IllegalArqumentException if there is no EntityGraph of

*

* the given name
* @since 2.1
*/

public EntityGraph<?> getEntityGraph(String graphName);

/'k'k
Return all named EntityGraphs that have been defined for the provided
class type.

@param entityClass entity class
@return list of all entity graphs defined for the entity

* X ok

*

70 Jakarta Persistence

3.1. EntityManager

* @throws IllegalArgumentException if the class is not an entity

* @since 2.1

*/

public <T> List<EntityGraph<? super T>> getEntityGraphs(Class<T> entity(Class);

The semantics of

public <T> TypedQuery<T> createQuery(String qlString, Class<T>

0 resultClass)

method may be extended in a future release of this specification to support other
result types. Applications that specify other result types (e.g., Tuple.class) will not be
portable.

The semantics

public <T> TypedQuery<T> createNamedQuery(String name, Class<T>

o resultClass)

method may be extended in a future release of this specification to support other
result types. Applications that specify other result types (e.g., Tuple.class) will not be
portable.

The persist, merge, remove, and refresh methods must be invoked within a transaction context when an
entity manager with a transaction-scoped persistence context is used. If there is no transaction context,
the jakarta.persistence.TransactionRequiredException is thrown.

Methods that specify a lock mode other than LockModeType.NONE must be invoked within a
transaction. If there is no transaction or if the entity manager has not been joined to the transaction,
the jakarta.persistence.TransactionRequiredException is thrown.

The find method (provided it is invoked without a lock or invoked with LockModeType.NONE) and the
getReference method are not required to be invoked within a transaction. If an entity manager with
transaction-scoped persistence context is in use, the resulting entities will be detached; if an entity
manager with an extended persistence context is used, they will be managed. See Section 3.3 for entity
manager use outside a transaction.

The Query, TypedQuery, StoredProcedureQuery, CriteriaBuilder, Metamodel, and EntityTransaction
objects obtained from an entity manager are valid while that entity manager is open.

If the argument to the createQuery method is not a valid Jakarta Persistence query string or a valid

Jakarta Persistence 71

3.2. Entity Instance’s Life Cycle

CriteriaQuery object, the IllegalArgumentException may be thrown or the query execution will fail and
a PersistenceException will be thrown. If the result class specification of a Jakarta Persistence query
language query is incompatible with the result of the query, the IllegalArgumentException may be
thrown when the createQuery method is invoked or the query execution will fail and a
PersistenceException will be thrown when the query is executed. If a native query is not a valid query
for the database in use or if the result set specification is incompatible with the result of the query, the
query execution will fail and a PersistenceException will be thrown when the query is executed. The
PersistenceException should wrap the underlying database exception when possible.

Runtime exceptions thrown by the methods of the EntityManager interface other than the
LockTimeoutException will cause the current transaction to be marked for rollback if the persistence
context is joined to that transaction.

The methods close, isOpen, joinTransaction, and getTransaction are used to manage application-
managed entity managers and their lifecycle. See Section 7.2.2.

The EntityManager interface and other interfaces defined by this specification contain methods that
take properties and/or hints as arguments. This specification distinguishes between properties and
hints as follows:

* A property defined by this specification must be observed by the provider unless otherwise
explicitly stated.

* A hint specifies a preference on the part of the application. While a hint defined by this
specification should be observed by the provider if possible, a hint may or may not always be
observed. A portable application must not depend on the observance of a hint.

3.1.2. Example of Use of EntityManager API

public class OrderEntryBean implements OrderEntry {
EntityManager em;
public void enterOrder(int custID, Order newOrder) {
Customer cust = em.find(Customer.class, custID);
cust.getOrders().add(newOrder);

newOrder.setCustomer(cust);
em.persist(newOrder);

3.2. Entity Instance’s Life Cycle

This section describes the EntityManager operations for managing an entity instance’s lifecycle. An

72 Jakarta Persistence

3.2. Entity Instance’s Life Cycle

entity instance can be characterized as being new, managed, detached, or removed.
* A new entity instance has no persistent identity, and is not yet associated with a persistence
context.

* A managed entity instance is an instance with a persistent identity that is currently associated with
a persistence context.

* A detached entity instance is an instance with a persistent identity that is not (or no longer)
associated with a persistence context.

* A removed entity instance is an instance with a persistent identity, associated with a persistence

context, that will be removed from the database upon transaction commit.

The following subsections describe the effect of lifecycle operations upon entities. Use of the cascade
annotation element may be used to propagate the effect of an operation to associated entities. The
cascade functionality is most typically used in parent-child relationships.

3.2.1. Entity Instance Creation

Entity instances are created by means of the new operation. An entity instance, when first created by
new is not yet persistent. An instance becomes persistent by means of the EntityManager APIL

3.2.2. Persisting an Entity Instance

A new entity instance becomes both managed and persistent by invoking the persist method on it or by
cascading the persist operation.

The semantics of the persist operation, applied to an entity X are as follows:

» If X is a new entity, it becomes managed. The entity X will be entered into the database at or before
transaction commit or as a result of the flush operation.

« If X is a preexisting managed entity, it is ignored by the persist operation. However, the persist
operation is cascaded to entities referenced by X, if the relationships from X to these other entities
are annotated with the cascade=PERSIST or cascade=ALL annotation element value or specified
with the equivalent XML descriptor element.

» If X is a removed entity, it becomes managed.

« If X is a detached object, the EntityExistsException may be thrown when the persist operation is
invoked, or the EntityExistsException or another PersistenceException may be thrown at flush or
commit time.

 For all entities Y referenced by a relationship from X, if the relationship to Y has been annotated
with the cascade element value cascade=PERSIST or cascade=ALL, the persist operation is applied
toY.

Jakarta Persistence 73

3.2. Entity Instance’s Life Cycle

3.2.3. Removal

A managed entity instance becomes removed by invoking the remove method on it or by cascading the
remove operation.

The semantics of the remove operation, applied to an entity X are as follows:

* If X is a new entity, it is ignored by the remove operation. However, the remove operation is
cascaded to entities referenced by X, if the relationship from X to these other entities is annotated
with the cascade=REMOVE or cascade=ALL annotation element value.

« If X is a managed entity, the remove operation causes it to become removed. The remove operation
is cascaded to entities referenced by X, if the relationships from X to these other entities is
annotated with the cascade=REMOVE or cascade=ALL annotation element value.

» If X is a detached entity, an IllegalArgumentException will be thrown by the remove operation (or
the transaction commit will fail).

» If X is a removed entity, it is ignored by the remove operation.

* A removed entity X will be removed from the database at or before transaction commit or as a
result of the flush operation.

After an entity has been removed, its state (except for generated state) will be that of the entity at the
point at which the remove operation was called.

3.2.4. Synchronization to the Database

In general, a persistence context will be synchronized to the database as described below. However, a
persistence context of type SynchronizationType.UNSYNCHRONIZED or an application-managed
persistence context that has been created outside the scope of the current transaction will only be
synchronized to the database if it has been joined to the current transaction by the application’s use of
the EntityManager joinTransaction method.

The state of persistent entities is synchronized to the database at transaction commit. This
synchronization involves writing to the database any updates to persistent entities and their
relationships as specified above.

An update to the state of an entity includes both the assignment of a new value to a persistent property
or field of the entity as well as the modification of a mutable value of a persistent property or field"”".

Synchronization to the database does not involve a refresh of any managed entities unless the refresh
operation is explicitly invoked on those entities or cascaded to them as a result of the specification of
the cascade=REFRESH or cascade=ALL annotation element value.

Bidirectional relationships between managed entities will be persisted based on references held by the
owning side of the relationship. It is the developer’s responsibility to keep the in-memory references
held on the owning side and those held on the inverse side consistent with each other when they
change. In the case of unidirectional one-to-one and one-to-many relationships, it is the developer’s

74 Jakarta Persistence

3.2. Entity Instance’s Life Cycle

responsibility to insure that the semantics of the relationships are adhered to.””

It is particularly important to ensure that changes to the inverse side of a relationship
0 result in appropriate updates on the owning side, so as to ensure the changes are not
lost when they are synchronized to the database.

The persistence provider runtime is permitted to perform synchronization to the database at other
times as well when a transaction is active and the persistence context is joined to the transaction. The
flush method can be used by the application to force synchronization. It applies to entities associated
with the persistence context. The setFlushMode methods of the EntityManager, Query, TypedQuery, and
StoredProcedureQuery interfaces can be used to control synchronization semantics. The effect of
FlushModeType.AUTO is defined in Section 3.10.8. If FlushModeType.COMMIT is specified, flushing will
occur at transaction commit; the persistence provider is permitted, but not required, to perform to
flush at other times. If there is no transaction active or if the persistence context has not been joined to
the current transaction, the persistence provider must not flush to the database.

The semantics of the flush operation, applied to an entity X are as follows:

» If X is a managed entity, it is synchronized to the database.

o For all entities Y referenced by a relationship from X, if the relationship to Y has been annotated
with the cascade element value cascade=PERSIST or cascade=ALL, the persist operation is
applied to Y.

o For any entity Y referenced by a relationship from X, where the relationship to Y has not been
annotated with the cascade element value cascade=PERSIST or cascade=ALL:

= If Y is new or removed, an IllegalStateException will be thrown by the flush operation (and
the transaction marked for rollback) or the transaction commit will fail.

= If Y is detached, the semantics depend upon the ownership of the relationship. If X owns the
relationship, any changes to the relationship are synchronized with the database;
otherwise, if Y owns the relationships, the behavior is undefined.

» If X is a removed entity, it is removed from the database. No cascade options are relevant.

3.2.5. Refreshing an Entity Instance

The state of a managed entity instance is refreshed from the database by invoking the refresh method
on it or by cascading the refresh operation.

The semantics of the refresh operation, applied to an entity X are as follows:

» If X is a managed entity, the state of X is refreshed from the database, overwriting changes made to
the entity, if any. The refresh operation is cascaded to entities referenced by X if the relationship
from X to these other entities is annotated with the cascade=REFRESH or cascade=ALL annotation
element value.

» If X is a new, detached, or removed entity, the IllegalArgumentException is thrown.

Jakarta Persistence 75

3.2. Entity Instance’s Life Cycle

3.2.6. Evicting an Entity Instance from the Persistence Context

An entity instance is removed from the persistence context by invoking the detach method on it or
cascading the detach operation. Changes made to the entity, if any (including removal of the entity),
will not be synchronized to the database after such eviction has taken place.

Applications must use the flush method prior to the detach method to ensure portable semantics if
changes have been made to the entity (including removal of the entity). Because the persistence
provider may write to the database at times other than the explicit invocation of the flush method,
portable applications must not assume that changes have not been written to the database if the flush
method has not been called prior to detach.

The semantics of the detach operation, applied to an entity X are as follows:

» If X is a managed entity, the detach operation causes it to become detached. The detach operation is
cascaded to entities referenced by X if the relationships from X to these other entities is annotated
with the cascade=DETACH or cascade=ALL annotation element value. Entities which previously
referenced X will continue to reference X.

« If X is a new or detached entity, it is ignored by the detach operation.

« If X is a removed entity, the detach operation causes it to become detached. The detach operation is
cascaded to entities referenced by X if the relationships from X to these other entities is annotated
with the cascade=DETACH or cascade=ALL annotation element value. Entities which previously
referenced X will continue to reference X. Portable applications should not pass removed entities
that have been detached from the persistence context to further EntityManager operations.

3.2.7. Detached Entities

A detached entity results from transaction commit if a transaction-scoped persistence context is used
(see Section 3.3); from transaction rollback (see Section 3.3.3); from detaching the entity from the
persistence context; from clearing the persistence context; from closing an entity manager; or from
serializing an entity or otherwise passing an entity by value—e.g.,, to a separate application tier,
through a remote interface, etc.

Detached entity instances continue to live outside of the persistence context in which they were
persisted or retrieved. Their state is no longer guaranteed to be synchronized with the database state.

The application may access the available state of available detached entity instances after the
persistence context ends. The available state includes:

* Any persistent field or property not marked fetch=LAZY

* Any persistent field or property that was accessed by the application or fetched by means of an
entity graph

If the persistent field or property is an association, the available state of an associated instance may
only be safely accessed if the associated instance is available. The available instances include:

76 Jakarta Persistence

3.2. Entity Instance’s Life Cycle

* Any entity instance retrieved using find().
* Any entity instances retrieved using a query or explicitly requested in a fetch join.

* Any entity instance for which an instance variable holding non-primary-key persistent state was
accessed by the application.

Any entity instance that can be reached from another available instance by navigating associations
marked fetch=EAGER.

3.2.7.1. Merging Detached Entity State

The merge operation allows for the propagation of state from detached entities onto persistent entities
managed by the entity manager.

The semantics of the merge operation applied to an entity X are as follows:
 If X is a detached entity, the state of X is copied onto a pre-existing managed entity instance X' of the

same identity or a new managed copy X' of X is created.

» If X is a new entity instance, a new managed entity instance X' is created and the state of X is copied
into the new managed entity instance X'.

o If X is a removed entity instance, an IllegalArgumentException will be thrown by the merge
operation (or the transaction commit will fail).

» If X is a managed entity, it is ignored by the merge operation, however, the merge operation is
cascaded to entities referenced by relationships from X if these relationships have been annotated
with the cascade element value cascade=MERGE or cascade=ALL annotation.

* For all entities Y referenced by relationships from X having the cascade element value
cascade=MERGE or cascade=ALL, Y is merged recursively as Y'. For all such Y referenced by X, X' is
set to reference Y'. (Note that if X is managed then X is the same object as X".)

« If X is an entity merged to X', with a reference to another entity Y, where cascade=MERGE or
cascade=ALL is not specified, then navigation of the same association from X' yields a reference to a
managed object Y' with the same persistent identity as Y.

The persistence provider must not merge fields marked LAZY that have not been fetched: it must
ignore such fields when merging.

Any Version columns used by the entity must be checked by the persistence runtime implementation
during the merge operation and/or at flush or commit time. In the absence of Version columns there is
no additional version checking done by the persistence provider runtime during the merge operation.

3.2.7.2. Detached Entities and Lazy Loading

Serializing entities and merging those entities back into a persistence context may not be interoperable
across vendors when lazy properties or fields and/or relationships are used.

A vendor is required to support the serialization and subsequent deserialization and merging of

Jakarta Persistence 77

3.2. Entity Instance’s Life Cycle

detached entity instances (which may contain lazy properties or fields and/or relationships that have
not been fetched) back into a separate JVM instance of that vendor’s runtime, where both runtime
instances have access to the entity classes and any required vendor persistence implementation
classes.

When interoperability across vendors is required, the application must not use lazy loading.

3.2.8. Managed Instances

It is the responsibility of the application to insure that an instance is managed in only a single
persistence context. The behavior is undefined if the same Java instance is made managed in more
than one persistence context.

The contains() method can be used to determine whether an entity instance is managed in the current
persistence context.

The contains method returns true:
* If the entity has been retrieved from the database or has been returned by getReference, and has
not been removed or detached.
« If the entity instance is new, and the persist method has been called on the entity or the persist
operation has been cascaded to it.

The contains method returns false:

o If the instance is detached.

* If the remove method has been called on the entity, or the remove operation has been cascaded to
it.

 If the instance is new, and the persist method has not been called on the entity or the persist
operation has not been cascaded to it.

Note that the effect of the cascading of persist, merge, remove, or detach is immediately visible to the
contains method, whereas the actual insertion, modification, or deletion of the database representation
for the entity may be deferred until the end of the transaction.

3.2.9. Load State

An entity is considered to be loaded if all attributes with FetchType.EAGER —whether explictly
specified or by default—(including relationship and other collection-valued attributes) have been
loaded from the database or assigned by the application. Attributes with FetchType.LAZY may or may
not have been loaded. The available state of the entity instance and associated instances is as described
in Section 3.2.7.

An attribute that is an embeddable is considered to be loaded if the embeddable attribute was loaded
from the database or assigned by the application, and, if the attribute references an embeddable

78 Jakarta Persistence

3.3. Persistence Context Lifetime and Synchronization Type

instance (i.e., is not null), the embeddable instance state is known to be loaded (i.e., all attributes of the
embeddable with FetchType.EAGER have been loaded from the database or assigned by the
application).

A collection-valued attribute is considered to be loaded if the collection was loaded from the database
or the value of the attribute was assigned by the application, and, if the attribute references a
collection instance (i.e., is not null), each element of the collection (e.g. entity or embeddable) is
considered to be loaded.

A single-valued relationship attribute is considered to be loaded if the relationship attribute was
loaded from the database or assigned by the application, and, if the attribute references an entity
instance (i.e., is not null), the entity instance state is known to be loaded.

A basic attribute is considered to be loaded if its state has been loaded from the database or assigned
by the application.

The PersistenceUtil.isLoaded methods can be used to determine the load state of an entity and its
attributes regardless of the persistence unit with which the entity is associated. The
PersistenceUtil.isLoaded methods return true if the above conditions hold, and false otherwise. If the
persistence unit is known, the PersistenceUnitUtil.isLoaded methods can be used instead. See Section
7.11.

Persistence provider contracts for determining the load state of an entity or entity attribute are
described in Section 9.8.1.

3.3. Persistence Context Lifetime and Synchronization
Type

The lifetime of a container-managed persistence context can either be scoped to a transaction
(transaction-scoped persistence context), or have a lifetime scope that extends beyond that of a single
transaction (extended persistence context). The enum PersistenceContextType is used to define the
persistence context lifetime scope for container-managed entity managers. The persistence context
lifetime scope is defined when the EntityManager instance is created (whether explicitly, or in
conjunction with injection or JNDI lookup). See Section 7.6.

package jakarta.persistence;
public enum PersistenceContextType {

TRANSACTION,
EXTENDED

By default, the lifetime of the persistence context of a container-managed entity manager corresponds
to the scope of a transaction (i.e., it is of type PersistenceContextType. TRANSACTION).

Jakarta Persistence 79

3.3. Persistence Context Lifetime and Synchronization Type

When an extended persistence context is used, the extended persistence context exists from the time
the EntityManager instance is created until it is closed. This persistence context might span multiple
transactions and non-transactional invocations of the EntityManager.

An EntityManager with an extended persistence context maintains its references to the entity objects
after a transaction has committed. Those objects remain managed by the EntityManager, and they can
be updated as managed objects between transactions.” Navigation from a managed object in an
extended persistence context results in one or more other managed objects regardless of whether a
transaction is active.

When an EntityManager with an extended persistence context is used, the persist, remove, merge, and
refresh operations can be called regardless of whether a transaction is active. The effects of these
operations will be committed to the database when the extended persistence context is enlisted in a
transaction and the transaction commits.

The scope of the persistence context of an application-managed entity manager is extended. It is the
responsibility of the application to manage the lifecycle of the persistence context.

Container-managed persistence contexts are described further in Section 7.6. Persistence contexts
managed by the application are described further in Section 7.7.

3.3.1. Synchronization with the Current Transaction

By default, a container-managed persistence context is of SynchronizationType.SYNCHRONIZED and is
automatically joined to the current transaction. A persistence context of
SynchronizationType. UNSYNCHRONIZED will not be enlisted in the current transaction, unless the
EntityManager joinTransaction method is invoked.

By default, an application-managed persistence context that is associated with a JTA entity manager
and that is created within the scope of an active transaction is automatically joined to that transaction.
An application-managed JTA persistence context that is created outside the scope of a transaction or an
application-managed persistence context of type SynchronizationType. UNSYNCHRONIZED will not be
joined to that transaction unless the EntityManager joinTransaction method is invoked.

An application-managed persistence context associated with a resource-local entity manager is always
automatically joined to any resource-local transaction that is begun for that entity manager.

Persistence context synchronization type is described further in Section 7.6.1.

3.3.2. Transaction Commit

The managed entities of a transaction-scoped persistence context become detached when the
transaction commits; the managed entities of an extended persistence context remain managed.

80 Jakarta Persistence

3.4. Locking and Concurrency

3.3.3. Transaction Rollback

For both transaction-scoped persistence contexts and for extended persistence contexts that are joined
to the current transaction, transaction rollback causes all pre-existing managed instances and removed
instances” to become detached. The instances' state will be the state of the instances at the point at
which the transaction was rolled back. Transaction rollback typically causes the persistence context to
be in an inconsistent state at the point of rollback. In particular, the state of version attributes and
generated state (e.g., generated primary keys) may be inconsistent. Instances that were formerly
managed by the persistence context (including new instances that were made persistent in that
transaction) may therefore not be reusable in the same manner as other detached objects—for
example, they may fail when passed to the merge operation.”™”

Because a transaction-scoped persistence context’s lifetime is scoped to a transaction
o regardless of whether it is joined to that transaction, the container closes the

persistence context upon transaction rollback. However, an extended persistence

context that is not joined to a transaction is unaffected by transaction rollback.

3.4. Locking and Concurrency

This specification assumes the use of optimistic concurrency control. It assumes that the databases to
which persistence units are mapped will be accessed by the implementation using read-committed
isolation (or a vendor equivalent in which long-term read locks are not held), and that writes to the
database will typically occur only when the flush method has been invoked—whether explicitly by the
application, or by the persistence provider runtime in accordance with the flush mode setting.

If a transaction is active and the persistence context is joined to the transaction, a
compliant implementation of this specification is permitted to write to the database

o immediately (i.e., whenever a managed entity is updated, created, and/or removed),
however, the configuration of an implementation to require such non-deferred
database writes is outside the scope of this specification.”"

In addition, both pessimistic and optimistic locking are supported for selected entities by means of
specified lock modes. Optimistic locking is described in Section 3.4.1 and Section 3.4.2; pessimistic
locking in Section 3.4.3. Section 3.4.4 describes the setting of optimistic and pessimistic lock modes. The
configuration of the setting of optimistic lock modes is described in Section 3.4.4.1, and the
configuration of the setting of pessimistic lock modes is described in Section 3.4.4.2.

3.4.1. Optimistic Locking

Optimistic locking is a technique that is used to insure that updates to the database data corresponding
to the state of an entity are made only when no intervening transaction has updated that data since the
entity state was read. This insures that updates or deletes to that data are consistent with the current
state of the database and that intervening updates are not lost. Transactions that would cause this
constraint to be violated result in an OptimisticLockException being thrown and the transaction

Jakarta Persistence 81

3.4. Locking and Concurrency

marked for rollback.

Portable applications that wish to enable optimistic locking for entities must specify Version attributes
for those entities—i.e., persistent properties or fields annotated with the Version annotation or
specified in the XML descriptor as version attributes. Applications are strongly encouraged to enable
optimistic locking for all entities that may be concurrently accessed or that may be merged from a
disconnected state. Failure to use optimistic locking may lead to inconsistent entity state, lost updates
and other state irregularities. If optimistic locking is not defined as part of the entity state, the
application must bear the burden of maintaining data consistency.

3.4.2. Version Attributes

The Version field or property is used by the persistence provider to perform optimistic locking. It is
accessed and/or set by the persistence provider in the course of performing lifecycle operations on the
entity instance. An entity is automatically enabled for optimistic locking if it has a property or field
mapped with a Version mapping.

An entity may access the state of its version field or property or export a method for use by the
application to access the version, but must not modify the version value.”” With the exception noted in
Section 4.10, only the persistence provider is permitted to set or update the value of the version
attribute in the object.

The version attribute is updated by the persistence provider runtime when the object is written to the
database. All non-relationship fields and properties and all relationships owned by the entity are
included in version checks.””

The persistence provider’s implementation of the merge operation must examine the version attribute
when an entity is being merged and throw an OptimisticLockException if it is discovered that the object
being merged is a stale copy of the entity—i.e. that the entity has been updated since the entity became
detached. Depending on the implementation strategy used, it is possible that this exception may not be
thrown until flush is called or commit time, whichever happens first.

The persistence provider runtime is required to use only the version attribute when performing
optimistic lock checking. Persistence provider implementations may provide additional mechanisms
beside version attributes to enable optimistic lock checking. However, support for such mechanisms is
not required of an implementation of this specification.”

If only some entities contain version attributes, the persistence provider runtime is required to check
those entities for which version attributes have been specified. The consistency of the object graph is
not guaranteed, but the absence of version attributes on some of the entities will not stop operations
from completing.

3.4.3. Pessimistic Locking

While optimistic locking is typically appropriate in dealing with moderate contention among
concurrent transactions, in some applications it may be useful to immediately obtain long-term

82 Jakarta Persistence

3.4. Locking and Concurrency

database locks for selected entities because of the often late failure of optimistic transactions. Such
immediately obtained long-term database locks are referred to here as “pessimistic” locks.””

Pessimistic locking guarantees that once a transaction has obtained a pessimistic lock on an entity
instance:

* no other transaction (whether a transaction of an application using the Jakarta Persistence API or
any other transaction using the underlying resource) may successfully modify or delete that
instance until the transaction holding the lock has ended.

« if the pessimistic lock is an exclusive lock”", that same transaction may modify or delete that entity
instance.

When an entity instance is locked using pessimistic locking, the persistence provider must lock the
database row(s) that correspond to the non-collection-valued persistent state of that instance. If a
joined inheritance strategy is used, or if the entity is otherwise mapped to a secondary table, this
entails locking the row(s) for the entity instance in the additional table(s). Entity relationships for
which the locked entity contains the foreign key will also be locked, but not the state of the referenced
entities (unless those entities are explicitly locked). Element collections and relationships for which the
entity does not contain the foreign key (such as relationships that are mapped to join tables or
unidirectional one-to-many relationships for which the target entity contains the foreign key) will not
be locked by default.

Element collections and relationships owned by the entity that are contained in join tables will be
locked if the jakarta.persistence.lock.scope property is specified with a value of
PessimisticLockScope. EXTENDED. The state of entities referenced by such relationships will not be
locked (unless those entities are explicitly locked). This property may be passed as an argument to the
methods of the EntityManager, Query, and TypedQuery interfaces that allow lock modes to be specified
or used with the NamedQuery annotation.

Locking such a relationship or element collection generally locks only the rows in the join table or
collection table for that relationship or collection. This means that phantoms will be possible.

The values of the jakarta.persistence.lock.scope property are defined by the PessimisticLockScope
enum.

package jakarta.persistence;

public enum PessimisticlLockScope {
NORMAL,
EXTENDED

This specification does not define the mechanisms a persistence provider uses to obtain database locks,
and a portable application should not rely on how pessimistic locking is achieved on the database.”” In
particular, a persistence provider or the underlying database management system may lock more rows

Jakarta Persistence 83

3.4. Locking and Concurrency

than the ones selected by the application.

Whenever a pessimistically locked entity containing a version attribute is updated on the database, the
persistence provider must also update (increment) the entity’s version column to enable correct
interaction with applications using optimistic locking. See Section 3.4.2 and Section 3.4.4.

Pessimistic locking may be applied to entities that do not contain version attributes. However, in this
case correct interaction with applications using optimistic locking cannot be ensured.

3.4.4. Lock Modes

Lock modes are intended to provide a facility that enables the effect of “repeatable read” semantics for
the items read, whether “optimistically” (as described in Section 3.4.4.1) or “pessimistically” (as
described in Section 3.4.4.2).

Lock modes can be specified by means of the EntityManager lock method, the methods of the
EntityManager, Query, and TypedQuery interfaces that allow lock modes to be specified, and the
NamedQuery annotation.

Lock mode values are defined by the LockModeType enum. Six distinct lock modes are defined. The
lock mode type values READ and WRITE are synonyms of OPTIMISTIC and
OPTIMISTIC_FORCE_INCREMENT respectively.” The latter are to be preferred for new applications.

package jakarta.persistence;

public enum LockModeType {
READ,
WRITE,
OPTIMISTIC,
OPTIMISTIC_FORCE_INCREMENT,
PESSIMISTIC_READ,
PESSIMISTIC_WRITE,
PESSIMISTIC_FORCE_INCREMENT,
NONE

3.4.4.1. OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT

The lock modes OPTIMISTIC and OPTIMISTIC_FORCE_INCREMENT are used for optimistic locking. The
lock mode type values READ and WRITE are synonymous with OPTIMISTIC and
OPTIMISTIC_FORCE_INCREMENT respectively.

The semantics of requesting locks of type LockModeType.OPTIMISTIC and
LockModeType.OPTIMISTIC_FORCE_INCREMENT are the following.

If transaction T1 calls lock(entity, LockModeType.OPTIMISTIC) on a versioned object, the entity

84 Jakarta Persistence

3.4. Locking and Concurrency

manager must ensure that neither of the following phenomena can occur:

* P1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and
obtains the modified value, before T1 has committed or rolled back. Transaction T2 eventually
commits successfully; it does not matter whether T1 commits or rolls back and whether it does so
before or after T2 commits.

* P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or
deletes that row, before T1 has committed. Both transactions eventually commit successfully.

This will generally be achieved by the entity manager acquiring a lock on the underlying database row.
While with optimistic concurrency concurrency, long-term database read locks are typically not
obtained immediately, a compliant implementation is permitted to obtain an immediate lock (so long
as it is retained until commit completes). If the lock is deferred until commit time, it must be retained
until the commit completes. Any implementation that supports repeatable reads in a way that prevents
the above phenomena is permissible.

The persistence implementation is not required to support calling lock(entity,
LockModeType.OPTIMISTIC) on a non-versioned object. When it cannot support such a lock call, it must
throw the PersistenceException. When supported, whether for versioned or non-versioned objects,
LockModeType.OPTIMISTIC must always prevent the phenomena P1 and P2. Applications that call
lock(entity, LockModeType.OPTIMISTIC) on non-versioned objects will not be portable.

If transaction T1 calls lock(entity, LockModeType.OPTIMISTIC_FORCE_INCREMENT) on a versioned
object, the entity manager must avoid the phenomena P1 and P2 (as with LockModeType.OPTIMISTIC)
and must also force an update (increment) to the entity’s version column. A forced version update may
be performed immediately, or may be deferred until a flush or commit. If an entity is removed before a
deferred version update was to have been applied, the forced version update is omitted.

The persistence implementation iS not required to support calling lock(entity,
LockModeType.OPTIMISTIC_FORCE_INCREMENT) on a non-versioned object. When it cannot support
such a lock call, it must throw the PersistenceException. When supported, whether for versioned or
non-versioned objects, LockModeType.OPTIMISTIC FORCE INCREMENT must always prevent the
phenomena P1 and P2. For non-versioned objects, whether or not
LockModeType.OPTIMISTIC_FORCE_INCREMENT has any additional behavior is vendor-specific.
Applications that call lock(entity, LockModeType.OPTIMISTIC FORCE_INCREMENT) on non-versioned
objects will not be portable.

For versioned objects, it is permissible for an implementation to use
LockModeType.OPTIMISTIC_FORCE_INCREMENT where LockModeType.OPTIMISTIC was requested, but
not vice versa.

If a versioned object is otherwise updated or removed, then the implementation must ensure that the
requirements of LockModeType.OPTIMISTIC FORCE INCREMENT are met, even if no explicit call to
EntityManager.lock was made.

For portability, an application should not depend on vendor-specific hints or configuration to ensure

Jakarta Persistence 85

3.4. Locking and Concurrency

repeatable read for objects that are not updated or removed via any mechanism other than the use of
version attributes and the EntityManager lock method. However, it should be noted that if an
implementation has acquired up-front pessimistic locks on some database rows, then it is free to
ignore lock(entity, LockModeType.OPTIMISTIC) calls on the entity objects representing those rows.

3.4.4.2. PESSIMISTIC_READ, PESSIMISTIC_WRITE, PESSIMISTIC_FORCE_INCREMENT

The lock modes PESSIMISTIC READ, PESSIMISTIC WRITE, and PESSIMISTIC FORCE INCREMENT are
used to immediately obtain long-term database locks."”

The semantics of requesting locks of type LockModeType.PESSIMISTIC_READ,
LockModeType.PESSIMISTIC WRITE, and LockModeType.PESSIMISTIC FORCE_INCREMENT are the
following.

If transaction T1 calls lock(entity, LockModeType. PESSIMISTIC READ) or lock(entity,
LockModeType.PESSIMISTIC_WRITE) on an object, the entity manager must ensure that neither of the
following phenomena can occur:

* P1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and
obtains the modified value, before T1 has committed or rolled back.

* P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or
deletes that row, before T1 has committed or rolled back.

Any such lock must be obtained immediately and retained until transaction T1 completes (commits or
rolls back).

Avoidance of phenomena P1 and P2 is generally achieved by the entity manager acquiring a long-term
lock on the underlying database row(s). Any implementation that supports pessimistic repeatable
reads as described above is permissible.

A lock with LockModeType.PESSIMISTIC_WRITE can be obtained on an entity instance
to force serialization among transactions attempting to update the entity data. A lock
with LockModeType.PESSIMISTIC_READ can be used to query data using repeatable-

o read semantics without the need to reread the data at the end of the transaction to
obtain a lock, and without blocking other transactions reading the data. A lock with
LockModeType.PESSIMISTIC_WRITE can be used when querying data and there is a
high likelihood of deadlock or wupdate failure among concurrent updating
transactions.

The persistence implementation must support calling lock(entity, LockModeType.PESSIMISTIC_READ)
and lock(entity, LockModeType.PESSIMISTIC_ WRITE) on a non-versioned entity as well as on a
versioned entity.

It is permissible for an implementation to use LockModeType.PESSIMISTIC WRITE where
LockModeType.PESSIMISTIC_READ was requested, but not vice versa.

86 Jakarta Persistence

3.4. Locking and Concurrency

When the lock cannot be obtained, and the database locking failure results in transaction-level
rollback, the provider must throw the PessimisticLockException and ensure that the JTA transaction or
EntityTransaction has been marked for rollback.

When the lock cannot be obtained, and the database locking failure results in only statement-level
rollback, the provider must throw the LockTimeoutException (and must not mark the transaction for
rollback).

When an application locks an entity with LockModeType. PESSIMISTIC READ and later updates that
entity, the lock must be converted to an exclusive lock when the entity is flushed to the database."” If
the lock conversion fails, and the database locking failure results in transaction-level rollback, the
provider must throw the PessimisticLockException and ensure that the JTA transaction or
EntityTransaction has been marked for rollback. When the lock conversion fails, and the database
locking failure results in only statement-level rollback, the provider must throw the
LockTimeoutException (and must not mark the transaction for rollback).

When lock(entity, LockModeType.PESSIMISTIC_READ), lock(entity, LockModeType.PESSIMISTIC_WRITE),
or lock(entity, LockModeType.PESSIMISTIC FORCE_INCREMENT) is invoked on a versioned entity that
is already in the persistence context, the provider must also perform optimistic version checks when
obtaining the lock. An OptimisticLockException must be thrown if the version checks fail. Depending
on the implementation strategy used by the provider, it is possible that this exception may not be
thrown until flush is called or commit time, whichever occurs first.

If transaction T1 calls lock(entity, LockModeType.PESSIMISTIC_FORCE_INCREMENT) on a versioned
object, the entity manager must avoid the phenomenon P1 and P2 (as with
LockModeType.PESSIMISTIC_READ and LockModeType.PESSIMISTIC_WRITE) and must also force an
update (increment) to the entity’s version column.

The persistence implementation iS not required to support calling lock(entity,
LockModeType.PESSIMISTIC_FORCE_INCREMENT) on a non-versioned object. When it cannot support
such a lock call, it must throw the PersistenceException. When supported, whether for versioned or
non-versioned objects, LockModeType.PESSIMISTIC FORCE INCREMENT must always prevent the
phenomena P1 and P2. For non-versioned objects, whether or not
LockModeType.PESSIMISTIC FORCE_INCREMENT has any additional behavior is vendor-specific.
Applications that call lock(entity, LockModeType.PESSIMISTIC_FORCE_INCREMENT) on non-versioned
objects will not be portable.

For versioned objects, it is permissible for an implementation to use
LockModeType.PESSIMISTIC FORCE INCREMENT where LockModeType.PESSIMISTIC READ or
LockModeType.PESSIMISTIC_WRITE was requested, but not vice versa.

If a versioned object locked with LockModeType.PESSIMISTIC_ READ or
LockModeType.PESSIMISTIC WRITE is updated, then the implementation must ensure that the
requirements of LockModeType.PESSIMISTIC_FORCE_INCREMENT are met.

Jakarta Persistence 87

3.4. Locking and Concurrency

3.4.4.3. Lock Mode Properties and Uses

The following property is defined by this specification for use in pessimistic locking, as described in
Section 3.4.3:

jakarta.persistence.lock.scope

This property may be used with the methods of the EntityManager interface that allow lock modes to
be specified, the Query and TypedQuery setLockMode methods, and the NamedQuery annotation. When
specified, this property must be observed. The provider is permitted to lock more (but not fewer) rows
than requested.

The following hint is defined by this specification for use in pessimistic locking.

jakarta.persistence.lock.timeout // time in milliseconds

This hint may be used with the methods of the EntityManager interface that allow lock modes to be
specified, the Query.setLockMode method and the NamedQuery annotation. It may also be passed as a
property to the Persistence.createEntityManagerFactory method and used in the properties element of
the persistence.xml file. See Section 3.1.1, Section 3.10.9, Section 8.2.1.9, Section 9.7, and Section 10.4.1.
When used in the createEntityManagerFactory method, the persistence.xml file, and the NamedQuery
annotation, the timeout hint serves as a default value which can be selectively overridden by use in the
methods of the EntityManager, Query, and TypedQuery interfaces as specified above. When this hint is
not specified, database timeout values are assumed to apply.

A timeout value of 0 is used to specify “no wait” locking.

Portable applications should not rely on this hint. Depending on the database in use and the locking
mechanisms used by the persistence provider, the hint may or may not be observed.

Vendors are permitted to support the use of additional, vendor-specific locking hints. Vendor-specific
hints must not use the jakarta.persistence namespace. Vendor-specific hints must be ignored if they are
not understood.

If the same property or hint is specified more than once, the following order of overriding applies, in
order of decreasing precedence:

* argument to method of EntityManager, Query, or TypedQuery interface

* specification to NamedQuery (annotation or XML)

* argument to createEntityManagerFactory method

* specification in persistence.xml

88 Jakarta Persistence

3.5. Entity Listeners and Callback Methods

3.4.5. OptimisticLockException

Provider implementations may defer writing to the database until the end of the transaction, when
consistent with the lock mode and flush mode settings in effect. In this case, an optimistic lock check
may not occur until commit time, and the OptimisticLockException may be thrown in the “before
completion” phase of the commit. If the OptimisticLockException must be caught or handled by the
application, the flush method should be used by the application to force the database writes to occur.
This will allow the application to catch and handle optimistic lock exceptions.

The OptimisticLockException provides an API to return the object that caused the exception to be
thrown. The object reference is not guaranteed to be present every time the exception is thrown but
should be provided whenever the persistence provider can supply it. Applications cannot rely upon
this object being available.

In some cases an OptimisticLockException will be thrown and wrapped by another exception, such as a
RemoteException, when VM boundaries are crossed. Entities that may be referenced in wrapped
exceptions should implement Serializable so that marshalling will not fail.

An OptimisticLockException always causes the transaction to be marked for rollback.

Refreshing objects or reloading objects in a new transaction context and then retrying the transaction
is a potential response to an OptimisticLockException.

3.5. Entity Listeners and Callback Methods

A method may be designated as a lifecycle callback method to receive notification of entity lifecycle
events. A lifecycle callback method can be defined on an entity class, a mapped superclass, or an entity
listener class associated with an entity or mapped superclass. An entity listener class is a class whose
methods are invoked in response to lifecycle events on an entity. Any number of entity listener classes
can be defined for an entity class or mapped superclass.

Default entity listeners—entity listener classes whose callback methods apply to all entities in the
persistence unit—can be specified by means of the XML descriptor.

Lifecycle callback methods and entity listener classes are defined by means of metadata annotations or
the XML descriptor. When annotations are used, one or more entity listener classes are denoted using
the EntityListeners annotation on the entity class or mapped superclass. If multiple entity listeners are
defined, the order in which they are invoked is determined by the order in which they are specified in
the EntityListeners annotation. The XML descriptor may be used as an alternative to specify the
invocation order of entity listeners or to override the order specified in metadata annotations.

Any subset or combination of annotations may be specified on an entity class, mapped superclass, or
listener class. A single class must not have more than one lifecycle callback method for the same
lifecycle event. The same method may be used for multiple callback events.

Multiple entity classes and mapped superclasses in an inheritance hierarchy may define listener

Jakarta Persistence 89

3.5. Entity Listeners and Callback Methods

classes and/or lifecycle callback methods directly on the class. Section 3.5.5 describes the rules that
apply to method invocation order in this case.

3.5.1. Entity Listeners

The entity listener class must have a public no-arg constructor.

Entity listener classes in Jakarta EE environments support dependency injection through the Contexts
and Dependency Injection API (CDI) [7] when CDI is enabled™". An entity listener class that makes use
of CDI injection may also define lifecycle callback methods annotated with the PostConstruct and
PreDestroy annotations. These methods will be invoked after injection has taken place and before the
entity listener instance is destroyed respectively.

The persistence provider is responsible for using the CDI SPI to create instances of the entity listener
class; to perform injection upon such instances; to invoke their PostConstruct and PreDestroy methods,
if any; and to dispose of the entity listener instances.

The persistence provider is only required to support CDI injection into entity listeners in Jakarta EE
container environments'”. If the CDI is not enabled, the persistence provider must not invoke entity
listeners that depend upon CDI injection.

An entity listener is a noncontextual object. In supporting injection into entity listeners, the persistence
provider must behave as if it carries out the following steps involving the use of the CDI SPI. (See [7]).

* Obtain a BeanManager instance. (See Section 9.1)

» Create an AnnotatedType instance for the entity listener class.

* Create an InjectionTarget instance for the annotated type.

* Create a CreationalContext.

* Instantiate the listener by calling the InjectionTarget produce method.

* Inject the listener instance by calling the InjectionTarget inject method on the instance.

* Invoke the PostConstruct callback, if any, by calling the InjectionTarget postConstruct method on

the instance.

When the listener instance is to be destroyed, the persistence provider must behave as if it carries out
the following steps.

 Call the InjectionTarget preDestroy method on the instance.
* Call the InjectionTarget dispose method on the instance

e Call the CreationalContext release method.

Persistence providers may optimize the steps above, e.g. by avoiding calls to the actual CDI SPI and
relying on container-specific interfaces instead, as long as the outcome is the same.

Entity listeners that do not make use of CDI injection are stateless. The lifecycle of such entity listeners

90 Jakarta Persistence

3.5. Entity Listeners and Callback Methods

is unspecified.

When invoked from within a Jakarta EE environment, the callback listeners for an entity share the
enterprise naming context of the invoking component, and the entity callback methods are invoked in
the transaction and security contexts of the calling component at the time at which the callback
method is invoked. "*

3.5.2. Lifecycle Callback Methods

Entity lifecycle callback methods can be defined on an entity listener class and/or directly on an entity
class or mapped superclass.

Lifecycle callback methods are annotated with annotations designating the callback events for which
they are invoked or are mapped to the callback event using the XML descriptor.

The annotations (and XML elements) used for callback methods on the entity class or mapped
superclass and for callback methods on the entity listener class are the same. The signatures of
individual methods, however, differ.

Callback methods defined on an entity class or mapped superclass have the following signature:
void <METHOD>()

Callback methods defined on an entity listener class have the following signature:
void <METHOD>(Object)

The Object argument is the entity instance for which the callback method is invoked. It may be
declared as the actual entity type.

The callback methods can have public, private, protected, or package level access, but must not be
Static or final.

The following annotations designate lifecycle event callback methods of the corresponding types.

PrePersist

e PostPersist
e PreRemove

e PostRemove

PreUpdate
» PostUpdate

PostLoad

Jakarta Persistence 91

3.5. Entity Listeners and Callback Methods

The following rules apply to lifecycle callback methods:

* Lifecycle callback methods may throw unchecked/runtime exceptions. A runtime exception thrown
by a callback method that executes within a transaction causes that transaction to be marked for
rollback if the persistence context is joined to the transaction.

» Lifecycle callbacks can invoke JNDI, JDBC, JMS, and enterprise beans.

* In general, the lifecycle method of a portable application should not invoke EntityManager or query
operations, access other entity instances, or modify relationships within the same persistence
context*) A lifecycle callback method may modify the non-relationship state of the entity on
which it is invoked.

3.5.3. Semantics of the Life Cycle Callback Methods for Entities

The PrePersist and PreRemove callback methods are invoked for a given entity before the respective
EntityManager persist and remove operations for that entity are executed. For entities to which the
merge operation has been applied and causes the creation of newly managed instances, the PrePersist
callback methods will be invoked for the managed instance after the entity state has been copied to it.
These PrePersist and PreRemove callbacks will also be invoked on all entities to which these operations
are cascaded. The PrePersist and PreRemove methods will always be invoked as part of the
synchronous persist, merge, and remove operations.

The PostPersist and PostRemove callback methods are invoked for an entity after the entity has been
made persistent or removed. These callbacks will also be invoked on all entities to which these
operations are cascaded. The PostPersist and PostRemove methods will be invoked after the database
insert and delete operations respectively. These database operations may occur directly after the
persist, merge, or remove operations have been invoked or they may occur directly after a flush
operation has occurred (which may be at the end of the transaction). Generated primary key values are
available in the PostPersist method.

The PreUpdate and PostUpdate callbacks occur before and after the database update operations to
entity data respectively. These database operations may occur at the time the entity state is updated or
they may occur at the time state is flushed to the database (which may be at the end of the transaction).

Note that it is implementation-dependent as to whether PreUpdate and PostUpdate

o callbacks occur when an entity is persisted and subsequently modified in a single
transaction or when an entity is modified and subsequently removed within a single
transaction. Portable applications should not rely on such behavior.

The PostLoad method for an entity is invoked after the entity has been loaded into the current
persistence context from the database or after the refresh operation has been applied to it. The
PostLoad method is invoked before a query result is returned or accessed or before an association is
traversed.

It is implementation-dependent as to whether callback methods are invoked before or after the
cascading of the lifecycle events to related entities. Applications should not depend on this ordering.

92 Jakarta Persistence

3.5. Entity Listeners and Callback Methods

3.5.4. Example

@Entity
@Entitylisteners(com.acme.AlertMonitor.class)
public class Account {

Long accountld;

Integer balance;

boolean preferred;

@Id
public Long getAccountId() { ... }

/] ...
public Integer getBalance() { ... }
/] ...

@Transient // because status depends upon non-persistent context
public boolean isPreferred() { ... }

/...
public void deposit(Integer amount) { ... }
public Integer withdraw(Integer amount) throws NSFException { ... }

@PrePersist
protected void validateCreate() {
if (getBalance() < MIN_REQUIRED_BALANCE)
throw new AccountException("Insufficient balance to open an account");

}

@PostlLoad
protected void adjustPreferredStatus() {
preferred = (getBalance() >= AccountManager.getPreferredStatusLevel());
}
}

public class AlertMonitor {
@PostPersist
public void newAccountAlert(Account acct) {
Alerts.sendMarketingInfo(acct.getAccountId(), acct.getBalance());

}

Jakarta Persistence 93

3.5. Entity Listeners and Callback Methods

3.5.5. Multiple Lifecycle Callback Methods for an Entity Lifecycle Event

If multiple callback methods are defined for an entity lifecycle event, the ordering of the invocation of
these methods is as follows.

Default listeners, if any, are invoked first, in the order specified in the XML descriptor. Default listeners
apply to all entities in the persistence unit, unless explicitly excluded by means of the
ExcludeDefaultListeners annotation or exclude-default-listeners XML element.

The lifecycle callback methods defined on the entity listener classes for an entity class or mapped
superclass are invoked in the same order as the specification of the entity listener classes in the
EntityListeners annotation.

If multiple classes in an inheritance hierarchy—entity classes and/or mapped superclasses—define
entity listeners, the listeners defined for a superclass are invoked before the listeners defined for its
subclasses in this order. The ExcludeSuperclassListeners annotation or exclude-superclass-listeners XML
element may be applied to an entity class or mapped superclass to exclude the invocation of the
listeners defined by the entity listener classes for the superclasses of the entity or mapped superclass.
The excluded listeners are excluded from the class to which the ExcludeSuperclassListeners annotation
or element has been specified and its subclasses"”. The ExcludeSuperclassListeners annotation (or
exclude-superclass-listeners XML element) does not cause default entity listeners to be excluded from
invocation.

If a lifecycle callback method for the same lifecycle event is also specified on the entity class and/or one
or more of its entity or mapped superclasses, the callback methods on the entity class and/or
superclasses are invoked after the other lifecycle callback methods, most general superclass first. A
class is permitted to override an inherited callback method of the same callback type, and in this case,
the overridden method is not invoked"”.

Callback methods are invoked by the persistence provider runtime in the order specified. If the
callback method execution terminates normally, the persistence provider runtime then invokes the
next callback method, if any.

The XML descriptor may be used to override the lifecycle callback method invocation order specified
in annotations.

3.5.6. Example

There are several entity classes and listeners for animals:

94 Jakarta Persistence

3.5. Entity Listeners and Callback Methods

@Entity
public class Animal {

/] ...
@PostPersist
protected void postPersistAnimal() {
/] ...
}
}
@Entity

@EntityListeners(PetlListener.class)

public class Pet extends Animal {
/] ...

}

@Entity
@Entitylisteners({CatListener.class, CatListener2.class})
public class Cat extends Pet {

/] ...
}
public class PetlListener {
@PostPersist
protected void postPersistPetListenerMethod(Object pet) {
/] ...
}
}
public class CatListener {
@PostPersist
protected void postPersistCatListenerMethod(Object cat) {
/] ...
}
}
public class CatListener2 {
@PostPersist
protected void postPersistCatListener2Method(Object cat) {
/] ...
}

If a PostPersist event occurs on an instance of Cat, the following methods are called in order:

Jakarta Persistence 95

3.5. Entity Listeners and Callback Methods

1. postPersistPetListenerMethod
2. postPersistCatListenerMethod
3. postPersistCatListener2Method

4. postPersistAnimal

Assume that SiameseCat is defined as a subclass of Cat:

(SiameseCatlListener.class)

public class SiameseCat extends Cat {
/] ...

protected void postPersistSiameseCat() {
/] ...

}

public class SiameseCatListener {

protected void postPersistSiameseCatListenerMethod(Object cat) {
/] ...

}

If a PostPersist event occurs on an instance of SiameseCat, the following methods are called in order:

. postPersistPetListenerMethod
. postPersistCatListenerMethod

. postPersistCatListener2Method

1
2
3
4. postPersistSiameseCatListenerMethod
5. postPersistAnimal

6

. postPersistSiameseCat

Assume the definition of SiameseCat were instead:

96 Jakarta Persistence

3.5. Entity Listeners and Callback Methods

(SiameseCatlListener.class)

public class SiameseCat extends Cat {
/] ...

protected void postPersistAnimal() {
/] ...
}

In this case, the following methods would be called in order, where postPersistAnimal is the PostPersist
method defined in the SiameseCat class:

1. postPersistPetListenerMethod

2. postPersistCatListenerMethod

3. postPersistCatListener2Method

4. postPersistSiameseCatListenerMethod

5. postPersistAnimal

3.5.7. Exceptions

Lifecycle callback methods may throw runtime exceptions. A runtime exception thrown by a callback
method that executes within a transaction causes that transaction to be marked for rollback if the
persistence context is joined to the transaction. No further lifecycle callback methods will be invoked
after a runtime exception is thrown.

3.5.8. Specification of Callback Listener Classes and Lifecycle Methods in the
XML Descriptor

The XML descriptor can be used as an alternative to metadata annotations to specify entity listener
classes and their binding to entities or to override the invocation order of lifecycle callback methods as
specified in annotations.

3.5.8.1. Specification of Callback Listeners

The entity-listener XML descriptor element is used to specify the lifecycle listener methods of an entity
listener class. The lifecycle listener methods are specified by using the pre-persist, post-persist, pre-
remove, post-remove, pre-update, post-update, and/or post-load elements.

An entity listener class can define multiple callback methods. However, at most one method of an
entity listener class can be designated as a pre-persist method, post-persist method, pre-remove
method, post-remove method, pre-update method, post-update method, and/or post-load method,

Jakarta Persistence 97

3.6. Bean Validation

regardless of whether the XML descriptor is used to define entity listeners or whether some
combination of annotations and XML descriptor elements is used.

3.5.8.2. Specification of the Binding of Entity Listener Classes to Entities

The entity-listeners subelement of the persistence-unit-defaults element is used to specify the default
entity listeners for the persistence unit.

The entity-listeners subelement of the entity or mapped-superclass element is used to specify the entity
listener classes for the respective entity or mapped superclass and its subclasses.

The binding of entity listeners to entity classes is additive. The entity listener classes bound to the
superclasses of an entity or mapped superclass are applied to it as well.

The exclude-superclass-listeners element specifies that the listener methods for superclasses are not to
be invoked for an entity class (or mapped superclass) and its subclasses.

The exclude-default-listeners element specifies that default entity listeners are not to be invoked for an
entity class (or mapped superclass) and its subclasses.

Explicitly listing an excluded default or superclass listener for a given entity class or mapped
superclass causes it to be applied to that entity or mapped superclass and its subclasses.

In the case of multiple callback methods for a single lifecycle event, the invocation order rules
described in Section 3.5.5 apply.

3.6. Bean Validation

This specification defines support for use of Bean Validation [5] within Jakarta Persistence
applications.

Managed classes (entities, mapped superclasses, and embeddable classes) may be configured to
include Bean Validation constraints.

Automatic validation using these constraints is achieved by specifying that Jakarta Persistence delegate
validation to the Bean Validation implementation upon the pre-persist, pre-update, and pre-remove
entity lifecycle events described in Section 3.5.3.

Validation can also be achieved by the application calling the validate method of a Validator instance
upon an instance of a managed class, as described in the Bean Validation specification [5].

3.6.1. Automatic Validation Upon Lifecycle Events

This specification supports the use of bean validation for the automatic validation of entities upon the
pre-persist, pre-update, and pre-remove lifecycle validation events. These lifecycle validation events
occur immediately after the point at which all the PrePersist, PreUpdate, and PreRemove lifecycle
callback method invocations respectively have been completed, or immediately after the point at

98 Jakarta Persistence

3.6. Bean Validation

which such lifecycle callback methods would have been completed (in the event that such callback
methods are not present).

In the case where an entity is persisted and subsequently modified in a single

o transaction or when an entity is modified and subsequently removed in a single
transaction, it is implementation dependent as to whether the pre-update validation
event occurs. Portable applications should not rely on this behavior.

3.6.1.1. Enabling Automatic Validation

The validation-mode element of the persistence.xml file determines whether the automatic lifecycle
event validation is in effect. The values of the validation-mode element are AUTO, CALLBACK, NONE.
The default validation mode is AUTO.

If the application creates the entity manager factory using the Persistence.createEntityManagerFactory
method, the validation mode can be specified using the jakarta.persistence.validation.mode map key,
which will override the value specified (or defaulted) in the persistence.xml file. The map values for
this key are "auto", "callback", "none".

If the auto validation mode is specified by the validation-mode element or the
jakarta.persistence.validation.mode property, or if neither the validation-mode element nor the
jakarta.persistence.validation.mode property is specified, and a Bean Validation provider is present in
the environment, the persistence provider must perform the automatic validation of entities as
described in Section 3.6.1.2. If no Bean Validation provider is present in the environment, no lifecycle
event validation takes place.

If the callback validation mode 1is specified by the validation-mode element or the
jakarta.persistence.validation.mode property, the persistence provider must perform the lifecycle event
validation as described in Section 3.6.1.2. It is an error if there is no Bean Validation provider present
in the environment, and the provider must throw the PersistenceException if the
jakarta.persistence.validation.mode property value ‘callback” has been passed to the
Persistence.createEntityManagerFactory method.

If the none validation mode 1is specified by the validation-mode element or the
jakarta.persistence.validation.mode property, the persistence provider must not perform lifecycle event
validation.

3.6.1.2. Requirements for Automatic Validation upon Lifecycle Events

For each event type, a list of groups is targeted for validation. By default, the default Bean Validation
group (the group Default) will be validated upon the pre-persist and pre-update lifecycle validation
events, and no group will be validated upon the pre-remove event.

This default validation behavior can be overridden by specifying the target groups using the following
validation properties in the persistence.xml file or by passing these properties in the configuration of
the entity manager factory through the createEntityManagerFactory method:

Jakarta Persistence 99

3.6. Bean Validation

* jakarta.persistence.validation.group.pre-persist
* jakarta.persistence.validation.group.pre-update

* jakarta.persistence.validation.group.pre-remove

The value of a validation property must be a list of the targeted groups. A targeted group must be
specified by its fully qualified class name. Names must be separated by a comma.

When one of the above events occurs for an entity, the persistence provider must validate that entity
by obtaining a Validator instance from the validator factory in use (see Section 3.6.2) and invoking its
validate method with the targeted groups. If the list of targeted groups is empty, no validation is
performed. If the set of ConstraintViolation objects returned by the validate method is not empty, the
persistence provider must throw the jakarta.validation.ConstraintViolationException containing a
reference to the returned set of ConstraintViolation objects, and must mark the transaction for rollback
if the persistence context is joined to the transaction.

The validator instance that is used for automatic validation upon lifecycle events must use a
TraversableResolver that has the following behavior:

o Attributes that have not been loaded must not be loaded.

* Validation cascade (@Valid) must not occur for entity associations (single- or multi-valued).

These requirements guarantee that no unloaded attribute or association will be loaded by side effect
and that no entity will be validated more than once during a given flush cycle.

Embeddable attributes must be validated only if the Valid annotation has been specified on them.

It is the responsibility of the persistence provider to pass an instance implementing the
jakarta.validation.TraversableResolver interface to the Bean Validation provider by calling
ValidatorFactory.usingContext().traversableResolver(tr).getValidator() where tr is the resolver having
the behavior described above.

3.6.2. Providing the ValidatorFactory

In Jakarta EE environments, a ValidatorFactory instance is made available by the Jakarta EE container.
The container is responsible for passing this validator factory to the persistence provider via the map
that is passed as an argument to the createContainerEntityManagerFactory call. The map key used by
the container must be the standard property name jakarta.persistence.validation.factory.

In Java SE environments, the application can pass the ValidatorFactory instance via the map that is
passed as an argument to the Persistence.createEntityManagerFactory call. The map key used must be
the standard property name jakarta.persistence.validation.factory. If no ValidatorFactory instance is
provided by the application, and if a Bean Validation provider is present in the classpath, the
persistence provider must instantiate the ValidatorFactory using the default bootstrapping approach
defined by the Bean Validation specification [5], namely Validation.buildDefaultValidatorFactory().

100 Jakarta Persistence

3.7. Entity Graphs

3.7. Entity Graphs

An entity graph is a template that captures the path and boundaries for an operation or query. It is
defined in the form of metadata or an object created by the dynamic EntityGraph API.

Entity graphs are used in the specification of “fetch plans” for query or find operations.

The EntityGraph, AttributeNode, and Subgraph interfaces are used to dynamically construct entity
graphs. The annotations to statically define entity graphs, namely NamedEntityGraph,
NamedAttributeNode, and NamedSubgraph, are described in Section 10.3. The named-entity-graph XML
element and its subelements may be used to override these annotations or to define additional named
entity graphs.

The semantics of entity graphs with regard to find and query operations are described in Section 3.7.4.

3.7.1. EntityGraph Interface

package jakarta.persistence;

import jakarta.persistence.metamodel.Attribute;
import java.util.List;

* This type represents the root of an entity graph that will be used
* as a template to define the attribute nodes and boundaries of a

* graph of entities and entity relationships. The root must be an

* entity type.

* <p>

* The methods to add subgraphs implicitly create the

* corresponding attribute nodes as well; such attribute nodes

* should not be redundantly specified.

* @param <T> The type of the root entity.

* @see AttributeNode
* @see Subgraph
* @see NamedEntityGraph

* @since 2.1
*/
public interface EntityGraph<T> {

/**

* Return the name of a named EntityGraph (an entity graph

* defined by means of the <code>NamedEntityGraph</code>

* annotation, XML descriptor element, or added by means of the

Jakarta Persistence 101

3.7. Entity Graphs

*

*
*/
pub

/**

* X % * X

*

*
*/
pub

/**
*
*
*
*
*
*/

pub

/**

* X % *

*

*

*/
pub

/**

*

*

* X % * X

*

<code>addNamedEntityGraph</code> method. Returns null if the
EntityGraph is not a named EntityGraph.

lic String getName();

Add one or more attribute nodes to the entity graph.

@param attributeName name of the attribute

@throws IllegalArgumentException if the attribute is not an
attribute of this entity.

@throws IllegalStateException if the EntityGraph has been
statically defined

lic void addAttributeNodes(String ... attributeName);

Add one or more attribute nodes to the entity graph.

@param attribute attribute
@throws IllegalStateException if the EntityGraph has been
statically defined

lic void addAttributeNodes(Attribute<T, ?>... attribute);

Add a node to the graph that corresponds to a managed
type. This allows for construction of multi-node entity graphs
that include related managed types.

@param attribute attribute

@return subgraph for the attribute

@throws IllegalArgumentException if the attribute's target type
is not a managed type

@throws I1legalStateException if the EntityGraph has been
statically defined

lic <X> Subgraph<X> addSubgraph(Attribute<T, X> attribute);

Add a node to the graph that corresponds to a managed
type with inheritance. This allows for multiple subclass
subgraphs to be defined for this node of the entity
graph. Subclass subgraphs will automatically include the
specified attributes of superclass subgraphs.

@param attribute attribute
@param type entity subclass

102 Jakarta Persistence

3.7. Entity Graphs

* @return subgraph for the attribute

* @throws IllegalArgumentException if the attribute's target

* type is not a managed type

* @throws IllegalStateException if the EntityGraph has been

* statically defined

*/

public <X> Subgraph<? extends X> addSubgraph(Attribute<T, X> attribute, Class<?
extends X> type);

/**
* Add a node to the graph that corresponds to a managed

* type. This allows for construction of multi-node entity graphs
that include related managed types.

@param attributeName name of the attribute

@return subgraph for the attribute

@throws IllegalArgumentException if the attribute is not an
attribute of this entity.

@throws IllegalArgumentException if the attribute's target type

* 0% % * X X

*

* is not a managed type

* @throws IllegalStateException if the EntityGraph has been
* statically defined

*/

public <X> Subgraph<X> addSubgraph(String attributeName);

/**

Add a node to the graph that corresponds to a managed

type with inheritance. This allows for multiple subclass
subgraphs to be defined for this node of the entity graph.
Subclass subgraphs will automatically include the specified
attributes of superclass subgraphs.

* X % *

*

@param attributeName name of the attribute

@param type entity subclass

@return subgraph for the attribute

@throws IllegalArgumentException if the attribute is not an
attribute of this managed type.

@throws IllegalArgumentException if the attribute's target type
is not a managed type

@throws IllegalStateException if this EntityGraph has been
statically defined

* X X * X

* 0% kX X

*/
public <X> Subgraph<X> addSubgraph(String attributeName, Class<X> type);

/**

* Add a node to the graph that corresponds to a map key
* that is a managed type. This allows for construction of
* multi-node entity graphs that include related managed types.

Jakarta Persistence 103

3.7. Entity Graphs

* 0% % * X X

*

*/
pub

/**

* 0% %X F X % *

*

* X % *

*
*/
pub
extends

/**
*

*

* X X * X

* 0% kX X

*/
pub

/**
*
*

*

@param attribute attribute

@return subgraph for the key attribute

@throws IllegalArgumentException if the attribute's target type
is not an entity

@throws IllegalStateException if this EntityGraph has been
statically defined

lic <X> Subgraph<X> addKeySubgraph(Attribute<T, X> attribute);

Add a node to the graph that corresponds to a map key

that is a managed type with inheritance. This allows for
construction of multi-node entity graphs that include related
managed types. Subclass subgraphs will include the specified
attributes of superclass subgraphs.

@param attribute attribute

@param type entity subclass

@return subgraph for the key attribute

@throws IllegalArgumentException if the attribute's target type
is not an entity

@throws IllegalStateException if this EntityGraph has been
statically defined

lic <X> Subgraph<? extends X> addKeySubgraph(Attribute<T, X> attribute, Class<?

X> type);

Add a node to the graph that corresponds to a map key
that is a managed type. This allows for construction of
multi-node entity graphs that include related managed types.

@param attributeName name of the attribute

@return subgraph for the key attribute

@throws IllegalArgumentException if the attribute is not an
attribute of this entity.

@throws IllegalArgumentException if the attribute's target type
is not an entity

@throws IllegalStateException if this EntityGraph has been
statically defined

lic <X> Subgraph<X> addKeySubgraph(String attributeName);
Add a node to the graph that corresponds to a map key

that is a managed type with inheritance. This allows for
construction of multi-node entity graphs that include related

104 Jakarta Persistence

3.7. Entity Graphs

* managed types. Subclass subgraphs will automatically include
the specified attributes of superclass subgraphs

*

@param attributeName name of the attribute

@param type entity subclass

@return subgraph for the key attribute

@throws IllegalArgumentException if the attribute is not an
attribute of this entity.

@throws IllegalArgumentException if the attribute's target type
is not a managed type

@throws IllegalStateException if this EntityGraph has been
statically defined

* 0% % F X % F X X

*

*/
public <X> Subgraph<X> addKeySubgraph(String attributeName, Class<X> type);

/**

* Add additional attributes to this entity graph that

correspond to attributes of subclasses of this EntityGraph's
entity type. Subclass subgraphs will automatically include the
specified attributes of superclass subgraphs.

*

* X % *

@param type entity subclass

@return subgraph for the subclass

* @throws IllegalArqgumentException if the type is not an entity type

* @throws IllegalStateException if the EntityGraph has been

* statically defined

*/

public <T> Subgraph<? extends T> addSubclassSubgraph(Class<? extends T> type);

*

/'k'k

Return the attribute nodes of this entity that are included in
the entity graph.

@return attribute nodes for the annotated entity type or empty
* list if none have been defined

*/

public List<AttributeNode<?>> getAttributeNodes();

* X ok

3.7.2. AttributeNode Interface

Jakarta Persistence 105

3.7. Entity Graphs

package jakarta.persistence;
import java.util.Map;

/**

* Represents an attribute node of an entity graph.
*

* @param <T> The type of the attribute.

*

*

@see EntityGraph
* @see Subgraph

* @see NamedAttributeNode

*

* @since 2.1

*/

public interface AttributeNode<T> {

/**

* Return the name of the attribute corresponding to the
* attribute node.

* @return name of the attribute

*/

public String getAttributeName();

/**

* Return the Map<Class, Subgraph> of subgraphs associated
* with this attribute node.

* @return Map of subgraphs associated with this attribute node

* or empty Map if none have been defined

*/

public Map<(Class, Subgraph> getSubgraphs();

/**

* Return the Map<Class, Subgraph> of subgraphs associated
* with this attribute node's map key.

* @return Map of subgraphs associated with this attribute

* node's map key or empty Map if none have been defined

*/

public Map<Class, Subgraph> getKeySubgraphs();

3.7.3. Subgraph Interface

package jakarta.persistence;

106 Jakarta Persistence

3.7. Entity Graphs

import jakarta.persistence.metamodel.Attribute;
import java.util.list;

/**

* This type represents a subgraph for an attribute node that
* corresponds to a Managed Type. Using this class, an entity subgraph
* can be embedded within an EntityGraph.

*

* @param <T> The type of the attribute.

*

* @see EntityGraph

* @see AttributeNode

* @see NamedSubgraph

*

* @since 2.1

*/

public interface Subgraph<T> {

/**
Add one or more attribute nodes to the entity graph.

@param attributeName name of the attribute

@throws I1legalArgumentException if the attribute is not an
attribute of this managed type.

@throws IllegalStateException if the EntityGraph has been

* statically defined

*/

public void addAttributeNodes(String ... attributeName);

* X % *

*

*

/**

*

Add one or more attribute nodes to the entity graph.
@param attribute attribute

*
*
* @throws IllegalStateException if this EntityGraph has been
* statically defined

*/

public void addAttributeNodes(Attribute<T, ?>... attribute);

/'k*

Add a node to the graph that corresponds to a managed
type. This allows for construction of multi-node entity graphs
that include related managed types.

* X ok

*

@param attribute attribute

@return subgraph for the attribute

@throws IllegalArgumentException if the attribute's target
type is not a managed type

@throws IllegalStateException if the EntityGraph has been

* X % *

*

Jakarta Persistence 107

3.7. Entity Graphs

*
*/
pub

/**

* X % * X

*

* 0% % * X X

*/
pub
extends

/**

*

* 0% Xk X X *

* X % *

*/
pub

/'k*

* 0% Xk X X * X

*

statically defined

lic <X> Subgraph<X> addSubgraph(Attribute<T, X> attribute);

Add a node to the graph that corresponds to a managed

type with inheritance. This allows for multiple subclass
subgraphs to be defined for this node of the entity

graph. Subclass subgraphs will automatically include the specified
attributes of superclass subgraphs

@param attribute attribute

@param type entity subclass

@return subgraph for the attribute

@throws IllegalArgumentException if the attribute's target
type is not a managed type

@throws IllegalStateException if this EntityGraph has been
statically defined

lic <X> Subgraph<? extends X> addSubgraph(Attribute<T, X> attribute, (Class<?

X> type);

Add a node to the graph that corresponds to a managed
type. This allows for construction of multi-node entity graphs
that include related managed types.

@param attributeName name of the attribute

@return subgraph for the attribute

@throws I1legalArgumentException if the attribute is not an
attribute of this managed type.

@throws IllegalArqgumentException if the attribute's target
type is not a managed type

@throws IllegalStateException if this EntityGraph has been
statically defined

lic <X> Subgraph<X> addSubgraph(String attributeName);

Add a node to the graph that corresponds to a managed
type with inheritance. This allows for multiple subclass
subgraphs to be defined for this node of the entity
graph. Subclass subgraphs will automatically include the
specified attributes of superclass subgraphs

@param attributeName name of the attribute
@param type entity subclass
@return subgraph for the attribute

108 Jakarta Persistence

*
*
*
*
*
*
*/

pub

/**

*

* 0% %X F X % *

*

*
*/
pub

/**

* 0% Xk X X *

* X % *

*

*
*/
pub
extends

/**

* X % * X

*

3.7. Entity Graphs

@throws IllegalArgumentException if the attribute is not
an attribute of this managed type.

@throws IllegalArgumentException if the attribute's target
type is not a managed type

@throws IllegalStateException if this EntityGraph has been
statically defined

lic <X> Subgraph<X> addSubgraph(String attributeName, Class<X> type);

Add a node to the graph that corresponds to a map key
that is a managed type. This allows for construction of
multinode entity graphs that include related managed types.

@param attribute attribute

@return subgraph for the key attribute

@throws IllegalArgumentException if the attribute's target
type is not a managed type entity

@throws IllegalStateException if this EntityGraph has been
statically defined

lic <X> Subgraph<X> addKeySubgraph(Attribute<T, X> attribute);

Add a node to the graph that corresponds to a map key

that is a managed type with inheritance. This allows for
construction of multi-node entity graphs that include related
managed types. Subclass subgraphs will automatically include
the specified attributes of superclass subgraphs

@param attribute attribute

@param type entity subclass

@return subgraph for the attribute

@throws IllegalArgumentException if the attribute's target
type is not a managed type entity

@throws IllegalStateException if this EntityGraph has been
statically defined

lic <X> Subgraph<? extends X> addKeySubgraph(Attribute<T, X> attribute, Class<?
X> type);

Add a node to the graph that corresponds to a map key
that is a managed type. This allows for construction of
multi-node entity graphs that include related managed types.

@param attributeName name of the attribute
@return subgraph for the key attribute

Jakarta Persistence 109

3.7. Entity Graphs

*

@throws I1legalArgumentException if the attribute is not an
* attribute of this entity.

* @throws IllegalArgumentException if the attribute's target
* type is not a managed type

* @throws IllegalStateException if this EntityGraph has been
* statically defined

*/

public <X> Subgraph<X> addKeySubgraph(String attributeName);

/**

* Add a node to the graph that corresponds to a map key

* that is a managed type with inheritance. This allows for

* construction of multi-node entity graphs that include related
managed types. Subclass subgraphs will include the specified
attributes of superclass subgraphs

*

@param attributeName name of the attribute

@param type entity subclass

@return subgraph for the attribute

@throws I1legalArgumentException if the attribute is not an
attribute of this entity.

@throws IllegalArgumentException if the attribute's target
type is not a managed type

@throws IllegalStateException if this EntityGraph has been

* statically defined

*/

public <X> Subgraph<X> addKeySubgraph(String attributeName, Class<X> type);

* 0% % F X X F X Xk

*

/**

* Return the attribute nodes corresponding to the attributes of
* this managed type that are included in the subgraph.

* @return list of attribute nodes included in the subgraph or

* empty List if none have been defined

*/

public List<AttributeNode<?>> getAttributeNodes();

/**

* Return the type for which this subgraph was defined.
* @return managed type referenced by the subgraph

*/

public Class<T> getClassType();

3.7.4. Use of Entity Graphs in find and query operations

An entity graph can be used with the find method or as a query hint to override or augment FetchType
semantics.

110 Jakarta Persistence

3.7. Entity Graphs

The standard properties jakarta.persistence.fetchgraph and jakarta.persistence.loadgraph are used to
specify such graphs to queries and find operations.

The default fetch graph for an entity or embeddable is defined to consist of the transitive closure of all
of its attributes that are specified as FetchType.EAGER (or defaulted as such).

The persistence provider is permitted to fetch additional entity state beyond that specified by a fetch
graph or load graph. It is required, however, that the persistence provider fetch all state specified by
the fetch or load graph.

3.7.4.1. Fetch Graph Semantics

When the jakarta.persistence.fetchgraph property is used to specify an entity graph, attributes that are
specified by attribute nodes of the entity graph are treated as FetchType.EAGER and attributes that are
not specified are treated as FetchType.LAZY.

The following rules apply, depending on attribute type. The rules of this section are applied recursively.

A primary key or version attribute never needs to be specified in an attribute node of a fetch graph.
(This applies to composite primary keys as well, including embedded id primary keys.) When an entity
is fetched, its primary key and version attributes are always fetched. It is not incorrect, however, to
specify primary key attributes or version attributes.

Attributes other than primary key and version attributes are assumed not to be fetched unless the
attribute is specified. The following rules apply to the specification of attributes.

« If the attribute is an embedded attribute, and the attribute is specified in an attribute node, but a
subgraph is not specified for the attribute, the default fetch graph for the embeddable is fetched. If
a subgraph is specified for the attribute, the attributes of the embeddable are fetched according to
their specification in the corresponding subgraph.

« If the attribute is an element collection of basic type, and the attribute is specified in an attribute
node, the element collection together with its basic elements is fetched.

» If the attribute is an element collection of embeddables, and the attribute is specified in an
attribute node, but a subgraph is not specified for the attribute, the element collection together
with the default fetch graph of its embeddable elements is fetched. If a subgraph is specified for the
attribute, the attributes of the embeddable elements are fetched according to the corresponding
subgraph specification.

 If the attribute is a one-to-one or many-to-one relationship, and the attribute is specified in an
attribute node, but a subgraph is not specified for the attribute, the default fetch graph of the target
entity is fetched. If a subgraph is specified for the attribute, the attributes of the target entity are
fetched according to the corresponding subgraph specification.

« If the attribute is a one-to-many or many-to-many relationship, and the attribute is specified in an
attribute node, but a subgraph is not specified, the collection is fetched and the default fetch graphs
of the referenced entities are fetched. If a subgraph is specified for the attribute, the entities in the
collection are fetched according to the corresponding subgraph specification.

Jakarta Persistence 111

3.7. Entity Graphs

* If the key of a map which has been specified in an attribute node is a basic type, it is fetched. If the
key of a map which has been specified in an attribute node is an embedded type, the default fetch
graph is fetched for the embeddable. Otherwise, if the key of the map is an entity, and a map key
subgraph is not specified for the attribute node, the map key is fetched according to its default fetch
graph. If a key subgraph is specified for the map key attribute, the map key attribute is fetched
according to the map key subgraph specification.

Examples:

public class Phonenumber {
protected String number;
protected PhoneTypeEnum type;

/] ...

In the above example, only the number attribute would be eagerly fetched.

(
attributeNodes={ ("projects")}

)

public class Employee {

protected long id;

protected String name;

protected String employeeNumber;

O

protected List<Dependents> dependents;

O

protected List<Project> projects;

O

protected List<PhoneNumber> phoneNumbers;

112 Jakarta Persistence

3.7. Entity Graphs

/] ...

public class Project {

protected long id;
String name;

(fetch=FetchType.EAGER)
protected Requirements doc;

/] ...

public class LargeProject extends Project {
(fetch=FetchType.LAZY)
protected Employee approver;

/] ...

public class Requirements {

protected long id;

protected String description;

(fetch=FetchType.LAZY)
protected Approval approval

/] ...

In the above example, the Employee entity’s primary key will be fetched as well as the related Project
instances, whose default fetch graph (id, name, and doc attributes) will be fetched. The related
Requirements object will be fetched according to its default fetch graph.

If the approver attribute of LargeProject were FetchType.EAGER, and if any of the projects were
instances of LargeProject, their approver attributes would also be fetched. Since the type of the
approver attribute is Employee, the approver’s default fetch graph (id, name, and employeeNumber

Jakarta Persistence 113

3.7. Entity Graphs
attributes) would also be fetched.

3.7.4.2. Load Graph Semantics

When the jakarta.persistence.loadgraph property is used to specify an entity graph, attributes that are
specified by attribute nodes of the entity graph are treated as FetchType.EAGER and attributes that are
not specified are treated according to their specified or default FetchType.

The following rules apply. The rules of this section are applied recursively.

* A primary key or version attribute never needs to be specified in an attribute node of a load graph.
(This applies to composite primary keys as well, including embedded id primary keys.) When an
entity is fetched, its primary key and version attributes are always fetched. It is not incorrect,
however, to specify primary key attributes or version attributes.

« If the attribute is an embedded attribute, and the attribute is specified in an attribute node, but a
subgraph is not specified for the attribute, the default fetch graph for the embeddable is fetched. If
a subgraph is specified for the attribute, attributes that are specified by the subgraph are also
fetched.

« If the attribute is an element collection of basic type, and the attribute is specified in an attribute
node, the element collection together with its basic elements is fetched.

o If the attribute is an element collection of embeddables, and the attribute is specified in an
attribute node, the element collection together with the default fetch graph of its embeddable
elements is fetched. If a subgraph is specified for the attribute, attributes that are specified by the
subgraph are also fetched.

 If the attribute is a one-to-one or many-to-one relationship, and the attribute is specified in an
attribute node, the default fetch graph of the target entity is fetched. If a subgraph is specified for
the attribute, attributes that are specified by the subgraph are also fetched.

« If the attribute is a one-to-many or many-to-many relationship, and the attribute is specified in an
attribute node, the collection is fetched and the default fetch graphs of the referenced entities are
fetched. If a subgraph is specified for the attribute, attributes that are specified by the subgraph are
also fetched.

* If the key of a map which has been specified in an attribute node is a basic type, it is fetched. If the
key of a map which has been specified in an attribute node is an embedded type, the default fetch
graph is fetched for the embeddable. Otherwise, if the key of the map is an entity, the map key is
fetched according to its default fetch graph. If a key subgraph is specified for the map key attribute,
additional attributes are fetched as specified in the key subgraph.

Examples:

114 Jakarta Persistence

@NamedEntityGraph
@Entity
public class Phonenumber {

In the above example, the number and type attributes are fetched.

eId
protected String number;

protected PhoneTypeEnum type;

/] ...

@NamedEntityGraph(

)

attributeNodes={@NamedAttributeNode("projects")}

@Entity
public class Employee {

}

@Id
@GeneratedValue
protected long id;

@Basic
protected String name;

@Basic
protected String employeeNumber;

@0neToMany()
protected List<Dependents> dependents;

@0neToMany()
protected List<Project> projects;

@0neToMany()
protected List<PhoneNumber> phoneNumbers;

/] ...

@Entity
@Inheritance
public class Project {

eId
@GeneratedValue
protected long 1id;

3.7. Entity Graphs

Jakarta Persistence 115

3.8. Type Conversion of Basic Attributes

String name;

(fetch=FetchType.EAGER)
protected Requirements doc;

/] ...

public class LargeProject extends Project {
(fetch=FetchType.LAZY)
protected Employee approver;

/] ...

public class Requirements {

protected long id;

protected String description;

(fetch=FetchType.LAZY)
protected Approval approval

/] ...

In the above example, the default fetch graph (id, name, employeeNumber attributes) of Employee is
fetched. The default fetch graphs of the related Project instances (id, name, and doc attributes) and
their Requirements instances (id and description attributes) are also fetched.

3.8. Type Conversion of Basic Attributes

The attribute conversion facility allows the developer to specify methods to convert between the entity
attribute representation and the database representation for attributes of basic types. Converters can
be used to convert basic attributes defined by entity classes, mapped superclasses, or embeddable
classes."”

An attribute converter must implement the jakarta.persistence.AttributeConverter interface. A
converter implementation class must be annotated with the Converter annotation or defined in the
XML descriptor as a converter. If the value of the autoApply element of the Converter annotation is
true, the converter will be applied to all attributes of the target type, including to basic attribute values

116 Jakarta Persistence

3.8. Type Conversion of Basic Attributes

that are contained within other, more complex attribute types. See Section 10.6.

package jakarta.persistence;

/**

* A class that implements this interface can be used to convert
* entity attribute state into database column representation

* and back again.

* Note that the X and Y types may be the same Java type.

*

* @param <X> the type of the entity attribute

* @param <Y> the type of the database column

*/

public interface AttributeConverter<X,Y> {

/**

* Converts the value stored in the entity attribute into the

* data representation to be stored in the database.

*

* @param attribute the entity attribute value to be converted
* @return the converted data to be stored in the database

* column

*/

public Y convertToDatabaseColumn (X attribute);

* Converts the data stored in the database column into the

* value to be stored in the entity attribute.

* Note that it is the responsibility of the converter writer to

* specify the correct <code>dbData</code> type for the corresponding
* column for use by the JDBC driver: i.e., persistence providers are
* not expected to do such type conversion.

* @param dbData the data from the database column to be

* converted

* @return the converted value to be stored in the entity
* attribute

*/

public X convertToEntityAttribute (Y dbData);

Attribute converter classes in Jakarta EE environments support dependency injection through the
Contexts and Dependency Injection API (CDI) [7] when CDI is enabled"”. An attribute converter class
that makes use of CDI injection may also define lifecycle callback methods annotated with the
PostConstruct and PreDestroy annotations. These methods will be invoked after injection has taken
place and before the attribute converter instance is destroyed respectively.

Jakarta Persistence 117

3.8. Type Conversion of Basic Attributes

The persistence provider is responsible for using the CDI SPI to create instances of the attribute
converter class; to perform injection upon such instances; to invoke their PostConstruct and
PreDestroy methods, if any; and to dispose of the attribute converter instances.

The persistence provider is only required to support CDI injection into attribute converters in Jakarta
EE container environments””. If CDI is not enabled, the persistence provider must not invoke attribute
converters that depend upon CDI injection.

An attribute converter is a noncontextual object. In supporting injection into attribute converters, the
persistence provider must behave as if it carries out the following steps involving the use of the CDI
SPIL. (See [7]).

* Obtain a BeanManager instance. (See Section 9.1.)

* Create an AnnotatedType instance for the attribute converter class.

 Create an InjectionTarget instance for the annotated type.

* Create a CreationalContext.

* Instantiate the listener by calling the InjectionTarget produce method.

* Inject the listener instance by calling the InjectionTarget inject method on the instance.

» Invoke the PostConstruct callback, if any, by calling the InjectionTarget postConstruct method on

the instance.

When the listener instance is to be destroyed, the persistence provider must behave as if it carries out
the following steps.

* Call the InjectionTarget preDestroy method on the instance.
 Call the InjectionTarget dispose method on the instance.
* Call the CreationalContext release method.

Persistence providers may optimize the steps above, e.g. by avoiding calls to the actual CDI SPI and
relying on container-specific interfaces instead, as long as the outcome is the same.

Attribute converters that do not make use of CDI injection are stateless. The lifecycle of such attribute
converters is unspecified.

The conversion of all basic types is supported except for the following: Id attributes (including the
attributes of embedded ids and derived identities), version attributes, relationship attributes, and
attributes explicitly annotated as Enumerated or Temporal or designated as such in the XML descriptor.
Auto-apply converters will not be applied to such attributes, and applications that apply converters to
such attributes through use of the Convert annotation will not be portable.

Type conversion may be specified at the level of individual attributes by means of the Convert
annotation. The Convert annotation may also be used to override or disable an auto-apply conversion.
See Section 11.1.10.

118 Jakarta Persistence

3.9. Caching

The Convert annotation may be applied directly to an attribute of an entity, mapped superclass, or
embeddable class to specify conversion of the attribute or to override the use of a converter that has
been specified as autoApply=true. When persistent properties are used, the Convert annotation is
applied to the getter method.

The Convert annotation may be applied to an entity that extends a mapped superclass to specify or
override the conversion mapping for an inherited basic or embedded attribute.

The persistence provider runtime is responsible for invoking the specified conversion methods for the
target attribute type when loading the entity attribute from the database and before storing the entity
attribute state to the database. The persistence provider must apply any conversion methods to
instances of attribute values in path expressions used within Jakarta Persistence query language
queries or criteria queries (such as in comparisons, bulk updates, etc.) before sending them to the
database for the query execution. When such converted attributes are used in comparison operations
with literals or parameters, the value of the literal or parameter to which they are compared must also
be converted. If the result of a Jakarta Persistence query language query or criteria query includes one
or more entity attributes for which conversion mappings have been specified, the persistence provider
must apply the specified conversions to the corresponding values in the query result before returning
them to the application. The use of functions, including aggregates, on converted attributes is
undefined. If an exception is thrown from a conversion method, the persistence provider must wrap
the exception in a PersistenceException and, if the persistence context is joined to a transaction, mark
the transaction for rollback.

3.9. Caching

This specification supports the use of a second-level cache by the persistence provider. The second-
level cache, if used, underlies the persistence context, and is largely transparent to the application.

A second-level cache is typically used to enhance performance. Use of a cache, however, may have
consequences in terms of the up-to-dateness of the data seen by the application, resulting in “stale
reads”. A stale read is defined as the reading of entities or entity state that is older than the point at
which the persistence context was started.

This specification defines the following portable configuration options that can be used by the
application developer to control caching behavior. Persistence providers may support additional
provider-specific options, but must observe all specification-defined options.

3.9.1. The shared-cache-mode Element

Whether the entities and entity-related state of a persistence unit will be cached is determined by the
value of the shared-cache-mode element of the persistence.xml file.

The shared-cache-mode element has five possible values: ALL, NONE, ENABLE_SELECTIVE,
DISABLE _SELECTIVE, UNSPECIFIED.

A value of ALL causes all entities and entity-related state and data to be cached.

Jakarta Persistence 119

3.9. Caching

A value of NONE causes caching to be disabled for the persistence unit. Persistence providers must not
cache if NONE is specified.

The values ENABLE_SELECTIVE and DISABLE_SELECTIVE are used in conjunction with the Cacheable
annotation (or XML element). The Cacheable annotation specifies whether an entity should be cached
if such selective caching is enabled by the persistence.xml shared-cache-mode element. The Cacheable
element is specified on the entity class. It applies to the given entity and its subclasses unless
subsequently overridden by a subclass.

* Cacheable(false) means that the entity and its state must not be cached by the provider.

e A value of ENABLE SELECTIVE enables the cache and causes entities for which Cacheable(true) (or
its XML equivalent) is specified to be cached. Entities for which Cacheable(true) is not specified or
for which Cacheable(false) is specified must not be cached.

* A value of DISABLE_SELECTIVE enables the cache and causes all entities to be cached except those
for which Cacheable(false) is specified. Entities for which Cacheable(false) is specified must not be
cached.

If either the shared-cache-mode element is not specified in the persistence.xml file or the value of the
shared-cache-mode element is UNSPECIFIED, and the jakarta.persistence.sharedCache.mode property is
not specified, the behavior is not defined, and provider-specific defaults may apply. If the shared-cache-
mode element and the jakarta.persistence.sharedCache.mode property are not specified, the semantics
of the Cacheable annotation (and XML equivalent) are undefined.

The persistence provider is not required to support use of a second-level cache. If the persistence
provider does not support use of a second-level cache or a second-level cache is not installed, this
element will be ignored and no caching will occur.

Further control over the second-level cache is described in Section 7.10.

3.9.2. Cache Retrieve Mode and Cache Store Mode Properties

Cache retrieve mode and cache store mode properties may be specified at the level of the persistence
context by means of the EntityManager setProperty method. These properties may be specified for the
EntityManager find and refresh methods and the Query, TypedQuery, and StoredProcedureQuery setHint
methods. Cache retrieve mode and/or cache store mode properties specified for the find, refresh, and
Query, TypedQuery, and StoredProcedureQuery setHint methods override those specified for the
persistence context for the specified find and refresh invocations, and for the execution of the specified
queries respectively.

If caching is disabled by the NONE value of the shared-cache-mode element, cache retrieve mode and
cache store mode properties must be ignored. Otherwise, if the ENABLE_SELECTIVE value is specified,
but Cacheable(true) is not specified for a particular entity, they are ignored for that entity; if the
DISABLE_SELECTIVE value is specified, they are ignored for any entities for which Cacheable(false) is
specified.

120 Jakarta Persistence

3.9. Caching

Cache retrieve mode and cache store mode properties must be observed when caching is enabled,
regardless of whether caching is enabled due to the specification of the shared-cache-mode element or
enabled due to provider-specific options. Applications that make use of cache retrieve mode or cache
store mode properties but which do not specify the shared-cache-mode element will not be portable.

The cache retrieve mode and cache store mode properties are jakarta.persistence.cache.retrieveMode
and jakarta.persistence.cache.storeMode respectively. These properties have the semantics defined
below.

The retrieveMode property specifies the behavior when data is retrieved by the find methods and by
the execution of queries. The retrieveMode property is ignored for the refresh method, which always
causes data to be retrieved from the database, not the cache.

package jakarta.persistence;

/**

* Used as the value of the

* <code>jakarta.persistence.cache.retrieveMode</code> property to
* specify the behavior when data is retrieved by the

* <code>find</code> methods and by queries.

*

* @since 2.0

*/

public enum CacheRetrieveMode {

/*7\‘

* Read entity data from the cache: this is
* the default behavior.

*/

USE,

/**

* Bypass the cache: get data directly from
* the database.

*/

BYPASS

The storeMode property specifies the behavior when data is read from the database and when data is
committed into the database.

Jakarta Persistence 121

3.10. Query APIs

package jakarta.persistence;

/**

* Used as the value of the
<code>jakarta.persistence.cache.storeMode</code> property to specify
the behavior when data is read from the database and when data is
committed into the database.

*

*
*
*
* @since 2.0

*/

public enum CacheStoreMode {

/**

* Insert entity data into cache when read from database

* and insert/update entity data when committed into database:
* this is the default behavior. Does not force refresh

* of already cached items when reading from database.

*/

USE,

/**

* Don't insert into cache.
=Y

BYPASS,

/**

* Insert/update entity data into cache when read

* from database and when committed into database.

* Forces refresh of cache for items read from database.
*/

REFRESH

3.10. Query APIs

The Query and TypedQuery APIs are used for the execution of both static queries and dynamic queries.
These APIs also support parameter binding and pagination control. The StoredProcedureQuery API is
used for the execution of queries that invoke stored procedures defined in the database.

3.10.1. Query Interface

package jakarta.persistence;

import java.util.Calendar;
import java.util.Date;

122 Jakarta Persistence

import java.util.list;
import java.util.Set;
import java.util.Map;
import java.util.stream.Stream;

/**
*
*
*
*
*
*
*

*/

Interface used to control query execution.

@see TypedQuery
@see StoredProcedureQuery
@see Parameter

@sin

ce 1.0

public interface Query {

/**

* 0% %k %k X % F X X F X X X X X F X X

*/

Execute

a SELECT query and return the query results

as an untyped List.

@return
@throws

@throws

@throws

@throws

@throws

@throws

a list of the results

I1legalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement
QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

TransactionRequiredException if a lock mode other than

3.10. Query APIs

<code>NONE</code> has been set and there is no transaction
or the persistence context has not been joined to the transaction

PessimisticLockException if pessimistic locking
fails and the transaction is rolled back
LockTimeoutException if pessimistic locking

fails and only the statement is rolled back
PersistenceException if the query execution exceeds
the query timeout value set and the transaction

is rolled back

List getResultlList();

/**

* 0% kX X X X Xk

Execute

a SELECT query and return the query results

as an untyped <code>java.util.stream.Stream</code>.
By default this method delegates to <code>getResultlList().stream()</code>,

however persistence provider may choose to override this method

to provide additional capabilities.

@return
@throws

a stream of the results
I1legalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement

Jakarta Persistence 123

3.10. Query APIs

* @throws QueryTimeoutException if the query execution exceeds

* the query timeout value set and only the statement is

* rolled back

* @throws TransactionRequiredException if a lock mode other than

* <code>NONE</code> has been set and there is no transaction
* or the persistence context has not been joined to the transaction
* @throws PessimisticLockException if pessimistic locking

* fails and the transaction is rolled back

* @throws LockTimeoutException if pessimistic locking

* fails and only the statement is rolled back

* @throws PersistenceException if the query execution exceeds

* the query timeout value set and the transaction

* is rolled back

* @see Stream

* @see #getResultList()

* @since 2.2

*/

default Stream getResultStream() {

return

}

/**

Execute
@return
@throws
@throws
@throws

@throws

@throws

@throws
@throws

@throws

b R T R T T R R R R R SR SR R SR

*/

getResultList().stream();

a SELECT query that returns a single untyped result.

the result

NoResultException if there is no result
NonUniqueResultException if more than one result
IllegalStateException if called for a Jakarta

Persistence query language UPDATE or DELETE statement
QueryTimeoutException if the query execution exceeds

the query timeout value set and only the statement is
rolled back

TransactionRequiredException if a lock mode other than
<code>NONE</code> has been set and there is no transaction
or the persistence context has not been joined to the transaction
PessimisticLockException if pessimistic locking

fails and the transaction is rolled back
LockTimeoutException if pessimistic locking

fails and only the statement is rolled back
PersistenceException if the query execution exceeds

the query timeout value set and the transaction

is rolled back

Object getSingleResult();

/**

* Execute
* @return
* @throws

an update or delete statement.
the number of entities updated or deleted
IllegalStateException if called for a Jakarta

124 Jakarta Persistence

3.10. Query APIs

Persistence query lanquage SELECT statement or for
a criteria query

@throws TransactionRequiredException if there is
no transaction or the persistence context has not
been joined to the transaction

@throws QueryTimeoutException if the statement execution
exceeds the query timeout value set and only
the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

* 0% %k F X X * X X X X

*/
int executeUpdate();

/**

* Set the maximum number of results to retrieve.

* @param maxResult maximum number of results to retrieve

* @return the same query instance

@throws IllegalArgumentException if the argument is negative

*

*/
Query setMaxResults(int maxResult);

/**

* The maximum number of results the query object was set to

* retrieve. Returns <code>Integer.MAX_VALUE</code> if <code>setMaxResults</code> was
not

* applied to the query object.

* @return maximum number of results

* @since 2.0

*/

int getMaxResults();

/**

Set the position of the first result to retrieve.

@param startPosition position of the first result,

numbered from @

@return the same query instance

@throws IllegalArgumentException if the argument is negative

* % X F X

*/
Query setFirstResult(int startPosition);

/**

* The position of the first result the query object was set to

* retrieve. Returns @ if <code>setFirstResult</code> was not applied to the
* query object.

* @return position of the first result

* @since 2.0

*/

Jakarta Persistence 125

3.10. Query APIs

int getFirstResult();

/**

Set a query property or hint. The hints elements may be used

to specify query properties and hints. Properties defined by

this specification must be observed by the provider.

Vendor-specific hints that are not recognized by a provider

must be silently ignored. Portable applications should not

rely on the standard timeout hint. Depending on the database

in use and the locking mechanisms used by the provider,

this hint may or may not be observed.

@param hintName name of the property or hint

@param value value for the property or hint

@return the same query instance

@throws IllegalArgumentException if the second argument is not
valid for the implementation

* 0% %k X X F X X X X Xk

*/
Query setHint(String hintName, Object value);

/'k*

* @Get the properties and hints and associated values that are
in effect for the query instance.

* @return query properties and hints

* @since 2.0

*/
Map<String, Object> getHints();

*

/**

Bind the value of a <code>Parameter</code> object.

@param param parameter object

@param value parameter value

@return the same query instance

@throws IllegalArgumentException if the parameter
does not correspond to a parameter of the

query
@since 2.0

* 0% kX X X X X

*/
<T> Query setParameter(Parameter<T> param, T value);

/**

* Bind an instance of <code>java.util.Calendar</code> to a <code>Parameter</code>
object.

* @param param parameter object
@param value parameter value
@param temporalType temporal type
@return the same query instance
@throws IllegalArgumentException if the parameter does not

correspond to a parameter of the query

* 0% F X Xk

126 Jakarta Persistence

3.10. Query APIs

* @since 2.0
*/
Query setParameter(Parameter<Calendar> param, Calendar value,
TemporalType temporalType);

/**

* Bind an instance of <code>java.util.Date</code> to a <code>Parameter</code>

object.

* @param param parameter object

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter does not

* correspond to a parameter of the query
* @since 2.0
*/

Query setParameter(Parameter<Date> param, Date value,
TemporalType temporalType);

/'k'k

* Bind an argument value to a named parameter.

* @param name parameter name

* @param value parameter value

@return the same query instance

@throws IllegalArgumentException if the parameter name does

*

*

* not correspond to a parameter of the query or if
* the argument is of incorrect type
*/

Query setParameter(String name, Object value);

/**

Bind an instance of <code>java.util.Calendar</code> to a named parameter.
@param name parameter name

@param value parameter value

@param temporalType temporal type

@return the same query instance

@throws IllegalArgumentException if the parameter name does

* X % *

*

*

* not correspond to a parameter of the query or if
* the value argument is of incorrect type
*/

Query setParameter(String name, Calendar value,
TemporalType temporalType);

/**

Bind an instance of <code>java.util.Date</code> to a named parameter.
@param name parameter name

@param value parameter value

@param temporallype temporal type

* X ok

*

Jakarta Persistence 127

3.10. Query APIs

* @return the same query instance
* @throws IllegalArgumentException if the parameter name does
* not correspond to a parameter of the query or if
* the value argument is of incorrect type
*/
Query setParameter(String name, Date value,
TemporalType temporalType);

/**

* Bind an argument value to a positional parameter.
@param position position

@param value parameter value

* @return the same query instance

* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the

* query or if the argument is of incorrect type

*

*

Query setParameter(int position, Object value);

/'k'k

Bind an instance of <code>java.util.Calendar</code> to a positional
parameter.

@param position position

@param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if position does not

*

*

* X ok

*

correspond to a positional parameter of the query or
if the value argument is of incorrect type
*/
Query setParameter(int position, Calendar value,
TemporalType temporalType);

/**

* Bind an instance of <code>java.util.Date</code> to a positional parameter.
* @param position position

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArqumentException if position does not

* correspond to a positional parameter of the query or
* if the value argument is of incorrect type

*/

Query setParameter(int position, Date value,
TemporalType temporalType);

/**

* Get the parameter objects corresponding to the declared

128 Jakarta Persistence

3.10. Query APIs

* parameters of the query.

* Returns empty set if the query has no parameters.

* This method is not required to be supported for native
* queries.

* @return set of the parameter objects

* @throws IllegalStateException if invoked on a native

* query when the implementation does not support
* this use

* @since 2.0

*/

Set<Parameter<?>> getParameters();

/**

* @Get the parameter object corresponding to the declared
* parameter of the given name.

* This method is not required to be supported for native
* queries.

* @param name parameter name

* @return parameter object

* @throws IllegalArgumentException if the parameter of the
* specified name does not exist

* @throws IllegalStateException if invoked on a native

* query when the implementation does not support
* this use

* @since 2.0

*/
Parameter<?> getParameter(String name);

/**

* Get the parameter object corresponding to the declared

* parameter of the given name and type.

* This method is required to be supported for criteria queries
* only.

* @param name parameter name

* @param type type

* @return parameter object

* @throws IllegalArgumentException if the parameter of the

* specified name does not exist or is not assignable

* to the type

* @throws IllegalStateException if invoked on a native

* query or Jakarta Persistence query lanquage query when
* the implementation does not support this use

*

@since 2.0
*/
<T> Parameter<T> getParameter(String name, Class<T> type);

/**

* Get the parameter object corresponding to the declared

Jakarta Persistence 129

3.10. Query APIs

positional parameter with the given position.

This method is not required to be supported for native

queries.

@param position position

@return parameter object

@throws IllegalArgumentException if the parameter with the
specified position does not exist

@throws IllegalStateException if invoked on a native
query when the implementation does not support
this use

@since 2.0

* 0% %k F X X * X X X X

*/
Parameter<?> getParameter(int position);

/**

Get the parameter object corresponding to the declared

positional parameter with the given position and type.

This method 1is not required to be supported by the provider.

@param position position

@param type type

@return parameter object

@throws IllegalArqgumentException if the parameter with the
specified position does not exist or is not assignable
to the type

@throws IllegalStateException if invoked on a native
query or Jakarta Persistence query language query when
the implementation does not support this use

@since 2.0

* 0% %k X X F X X X X Xk

*/
<T> Parameter<T> getParameter(int position, Class<T> type);

/'k*

* Return a boolean indicating whether a value has been bound
* to the parameter.

* @param param parameter object

* @return boolean indicating whether parameter has been bound
* @since 2.0

*/

boolean isBound(Parameter<?> param);

/**

Return the input value bound to the parameter.
(Note that OUT parameters are unbound.)
@param param parameter object
@return parameter value
@throws IllegalArgumentException if the parameter is not
a parameter of the query
@throws IllegalStateException if the parameter has not been

* 0% kX X F X

130 Jakarta Persistence

3.10. Query APIs

k3 been bound
* @since 2.0
*/

<T> T getParameterValue(Parameter<T> param);

/**

*

Return the input value bound to the named parameter.

* (Note that OUT parameters are unbound.)

* @param name parameter name

* @return parameter value

* @throws IllegalStateException if the parameter has not been
* been bound

* @throws IllegalArgumentException if the parameter of the

* specified name does not exist

* @since 2.0

*/
Object getParameterValue(String name);

/**

* Return the input value bound to the positional parameter.
* (Note that OUT parameters are unbound.)

* @param position position

*

@return parameter value
@throws IllegalStateException if the parameter has not been

*

* been bound

* @throws IllegalArgumentException if the parameter with the
* specified position does not exist

* @since 2.0

*/

Object getParameterValue(int position);

/'k'k

Set the flush mode type to be used for the query execution.
The flush mode type applies to the query regardless of the
flush mode type in use for the entity manager.

@param flushMode flush mode

@return the same query instance

* % X ok

*

*/
Query setFlushMode(FlushModeType flushMode);

/**

* Get the flush mode in effect for the query execution.

* If a flush mode has not been set for the query object,

* returns the flush mode in effect for the entity manager.
* @return flush mode

* @since 2.0

*/

FlushModeType getFlushMode();

Jakarta Persistence 131

3.10. Query APIs

/**

Set the lock mode type to be used for the query execution.

@param lockMode Tlock mode

@return the same query instance

@throws IllegalStateException if the query is found not to be
a Jakarta Persistence query language SELECT query
or a CriteriaQuery query

* @since 2.0

*/

Query setLockMode(LockModeType lockMode);

* X % *

*

*

/'k*

* @Get the current lock mode for the query. Returns null if a lock
* mode has not been set on the query object.

* @return lock mode

* @throws IllegalStateException if the query is found not to be

*

a Jakarta Persistence query lanquage SELECT query or
a Criteria API query

* @since 2.0

*/

LockModeType getLockMode();

*

/**

Return an object of the specified type to allow access to

the provider-specific API. If the provider's query

implementation does not support the specified class, the

<code>PersistenceException</code> is thrown.

@param cls the class of the object to be returned. This is
normally either the underlying query
implementation class or an interface that it

* 0% % * X X

*

* implements.

* @return an instance of the specified class

* @throws PersistenceException if the provider does not support
* the call

* @since 2.0

*/

<T> T unwrap(Class<T> cls);

3.10.2. TypedQuery Interface

package jakarta.persistence;

import java.util.list;
import java.util.Date;

132 Jakarta Persistence

3.10. Query APIs

import java.util.Calendar;
import java.util.stream.Stream;

/**

* Interface used to control the execution of typed queries.
* @param <X> query result type

*
* @see Query

* @see Parameter

*

* @since 2.0

*/

public interface TypedQuery<X> extends Query {

/**

Execute a SELECT query and return the query results

as a typed List.

@return a list of the results

@throws IllegalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws TransactionRequiredException if a lock mode other than
<code>NONE</code> has been set and there is no transaction
or the persistence context has not been joined to the
transaction

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

b S R R B N R R R N R R SR I

*/
List<X> getResultList();

/**

Execute a SELECT query and return the query results

as a typed <code>java.util.stream.Stream</code>.

By default this method delegates to <code>getResultlList().stream()</code>,
however persistence provider may choose to override this method

to provide additional capabilities.

@return a stream of the results

@throws IllegalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds

b R R T I

Jakarta Persistence 133

3.10. Query APIs

the query timeout value set and only the statement is
rolled back
@throws TransactionRequiredException if a lock mode other than
<code>NONE</code> has been set and there is no transaction
or the persistence context has not been joined to the transaction
@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back
@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back
@see Stream
@see #getResultList()
@since 2.2

L R R R I T R I N I

*/
default Stream<X> getResultStream() {
return getResultList().stream();

}

/**

Execute a SELECT query that returns a single result.

@return the result

@throws NoResultException if there is no result

@throws NonUniqueResultException if more than one result

@throws IllegalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws TransactionRequiredException if a lock mode other than
<code>NONE</code> has been set and there is no transaction
or the persistence context has not been joined to the
transaction

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

0% kX Xk X X X X X X X X F X X X F X

*/
X getSingleResult();

/**

* Set the maximum number of results to retrieve.
* @param maxResult maximum number of results to retrieve
* @return the same query instance

134 Jakarta Persistence

3.10. Query APIs

* @throws IllegalArgumentException if the argument is negative
*/
TypedQuery<X> setMaxResults(int maxResult);

/**
* Set the position of the first result to retrieve.
* @param startPosition position of the first result,
numbered from 0
@return the same query instance
@throws IllegalArgumentException if the argument is negative

* % F

*/
TypedQuery<X> setFirstResult(int startPosition);

/**

Set a query property or hint. The hints elements may be used

to specify query properties and hints. Properties defined by

this specification must be observed by the provider.

Vendor-specific hints that are not recognized by a provider

must be silently ignored. Portable applications should not

rely on the standard timeout hint. Depending on the database

in use and the locking mechanisms used by the provider,

this hint may or may not be observed.

@param hintName name of property or hint

@param value value for the property or hint

@return the same query instance

@throws IllegalArgumentException if the second argument is not
valid for the implementation

* 0% X Ok X X X X X *

* % F

*/
TypedQuery<X> setHint(String hintName, Object value);

/**

* Bind the value of a <code>Parameter</code> object.
* @param param parameter object

* @param value parameter value

*

@return the same query instance
@throws IllegalArgumentException if the parameter
does not correspond to a parameter of the
* query
*/
<T> TypedQuery<X> setParameter(Parameter<T> param, T value);

*

/**

* Bind an instance of <code>java.util.Calendar</code> to a <code>Parameter</code>
object.

* @param param parameter object

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

Jakarta Persistence 135

3.10. Query APIs

* @throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
*/
TypedQuery<X> setParameter(Parameter<Calendar> param,
Calendar value,
TemporalType temporalType);

/**

* Bind an instance of <code>java.util.Date</code> to a <code>Parameter</code>
object.

* @param param parameter object

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter does not

* correspond to a parameter of the query

*/

TypedQuery<X> setParameter(Parameter<Date> param, Date value,

TemporalType temporalType);

/**

* Bind an argument value to a named parameter.

* @param name parameter name

* @param value parameter value

* @return the same query instance

@throws I1legalArgumentException if the parameter name does
* not correspond to a parameter of the query or if
the argument is of incorrect type

*

*

*/
TypedQuery<X> setParameter(String name, Object value);

/'k'k

Bind an instance of <code>java.util.Calendar</code> to a named parameter.
@param name parameter name

@param value parameter value

* @param temporalType temporal type

@return the same query instance

@throws I1legalArgumentException if the parameter name does

* not correspond to a parameter of the query or if

the value argument is of incorrect type

* X ok

*

*

*

*/
TypedQuery<X> setParameter(String name, Calendar value,
TemporalType temporalType);

/**

* Bind an instance of <code>java.util.Date</code> to a named parameter.
* @param name parameter name
* @param value parameter value

136 Jakarta Persistence

3.10. Query APIs

*

@param temporalType temporal type

* @return the same query instance

* @throws IllegalArqgumentException if the parameter name does
* not correspond to a parameter of the query or if

* the value argument is of incorrect type

*/

TypedQuery<X> setParameter(String name, Date value,
TemporalType temporalType);

/**

* Bind an argument value to a positional parameter.

* @param position position

* @param value parameter value

@return the same query instance

* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the

* query or if the arqgument is of incorrect type

*

*/
TypedQuery<X> setParameter(int position, Object value);

/**

* Bind an instance of <code>java.util.Calendar</code> to a positional
* parameter.

* @param position position

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArqumentException if position does not

* correspond to a positional parameter of the query

* or if the value argument is of incorrect type

TypedQuery<X> setParameter(int position, Calendar value,
TemporalType temporalType);

/**
* Bind an instance of <code>java.util.Date</code> to a positional parameter.
* @param position position
@param value parameter value
@param temporalType temporal type
@return the same query instance
@throws IllegalArgumentException if position does not
correspond to a positional parameter of the query
or if the value argument is of incorrect type

* X %k X X

*

*/
TypedQuery<X> setParameter(int position, Date value,
TemporalType temporalType);

/**

Jakarta Persistence 137

3.10. Query APIs

Set the flush mode type to be used for the query execution.
The flush mode type applies to the query regardless of the
flush mode type in use for the entity manager.

@param flushMode flush mode

@return the same query instance

* 0% kX X

*/
TypedQuery<X> setFlushMode(FlushModeType flushMode);

/**

* Set the lock mode type to be used for the query execution.
@param lockMode Tlock mode

@return the same query instance

* @throws IllegalStateException if the query is found not to

* be a Jakarta Persistence query language SELECT query
* or a CriteriaQuery query

*

*

*/
TypedQuery<X> setLockMode(LockModeType lockMode);

3.10.3. Tuple Interface

package jakarta.persistence;

import java.util.list;

/**

* Interface for extracting the elements of a query result tuple.
*

* @see TupleElement
*

* @since 2.0
*/
public interface Tuple {

/**

* Get the value of the specified tuple element.
* @param tupleElement tuple element

* @return value of tuple element

* @throws IllegalArqumentException if tuple element
* does not correspond to an element in the
* query result tuple

*/

<X> X get(TupleElement<X> tupleElement);

/'k'k

138 Jakarta Persistence

3.10. Query APIs

Get the value of the tuple element to which the

specified alias has been assigned.

@param alias alias assigned to tuple element

@param type of the tuple element

@return value of the tuple element

@throws IllegalArgumentException if alias
does not correspond to an element in the
query result tuple or element cannot be
assigned to the specified type

* 0% Xk X X F X X

*/
<X> X get(String alias, Class<X> type);

/'k'k

Get the value of the tuple element to which the
specified alias has been assigned.
@param alias alias assigned to tuple element
@return value of the tuple element
@throws IllegalArgumentException if alias
does not correspond to an element in the
query result tuple

* 0% ko X X

*/
Object get(String alias);

/**

Get the value of the element at the specified

position in the result tuple. The first position is 0.

@param i position in result tuple

@param type type of the tuple element

@return value of the tuple element

@throws I1legalArgumentException if i1 exceeds
length of result tuple or element cannot be
assigned to the specified type

* 0%k F X X X X

*/
<X> X get(int i, Class<X> type);

/**

Get the value of the element at the specified
position in the result tuple. The first position is 0.
@param i position in result tuple
@return value of the tuple element
@throws IllegalArgumentException if i exceeds
length of result tuple

* 0% %k * X X

*/
Object get(int i);

/**

* Return the values of the result tuple elements as an array.
* @return tuple element values

Jakarta Persistence 139

3.10. Query APIs

*/
Object[] toArray();

/**

* Return the tuple elements.

* @return tuple elements

*/

List<TupleElement<?>> getElements();

3.10.4. TupleElement Interface

package jakarta.persistence;

/**

*

The <code>TupleElement</code> interface defines an element that is returned in
* 3 query result tuple.

* @param <X> the type of the element
*

* @see Tuple

*

* @since 2.0

*/

public interface TupleElement<X> {

/**

* Return the Java type of the tuple element.
* @return the Java type of the tuple element
*/

(lass<? extends X> getlJavaType();

/**

* Return the alias assigned to the tuple element or null,
* if no alias has been assigned.

* @return alias

*/

String getAlias();

3.10.5. Parameter Interface

140 Jakarta Persistence

3.10. Query APIs

package jakarta.persistence;

/**

* Type for query parameter objects.

* @param <T> the type of the parameter
*

* @see Query

* @see TypedQuery

*

* @since 2.0

*/

public interface Parameter<T> {

/**

* Return the parameter name, or null if the parameter is
* not a named parameter or no name has been assigned.

* @return parameter name

*/

String getName();

/'k*

* Return the parameter position, or null if the parameter
* is not a positional parameter.

* @return position of parameter

*/

Integer getPosition();

/'k'k

*

Return the Java type of the parameter. Values bound to the
parameter must be assignable to this type.
This method is required to be supported for criteria queries
only. Applications that use this method for Jakarta
Persistence query lanquage queries and native queries will
not be portable.
@return the Java type of the parameter
@throws IllegalStateException if invoked on a parameter
obtained from a query language
query or native query when the implementation does
not support this use

* ok *

*

* X %X * X

*

*/
(lass<T> getParameterType();

3.10.6. StoredProcedureQuery Interface

Jakarta Persistence 141

3.10. Query APIs
package jakarta.persistence;

import java.util.Calendar;
import java.util.Date;
import java.util.List;

/**
Interface used to control stored procedure query execution.

<p>

Stored procedure query execution may be controlled in accordance with
the following:

<1i>The <code>setParameter</code> methods are used to set the values of
all required <code>IN</code> and <code>INOUT</code> parameters.

It is not required to set the values of stored procedure parameters

for which default values have been defined by the stored procedure.</1i>

When <code>getResultlList</code> and <code>getSingleResult</code> are
called on a <code>StoredProcedureQuery</code> object, the provider
will call <code>execute</code> on an unexecuted stored procedure
query before processing <code>getResultlList</code> or
<code>getSingleResult</code>.</11>

When <code>executeUpdate</code> is called on a
<code>StoredProcedureQuery</code> object, the provider will call
<code>execute</code> on an unexecuted stored procedure query

followed by <code>getUpdateCount</code>. The results of
<code>executelUpdate</code> will be those of <code>getUpdateCount</code>.</1i>

The <code>execute</code> method supports both the simple case where
scalar results are passed back only via <code>INOUT</code> and
<code>0UT</code> parameters as well as the most general case

(multiple result sets and/or update counts, possibly also in
combination with output parameter values).</1i>

The <code>execute</code> method returns true if the first result is a
result set, and false if it is an update count or there are no results
other than through <code>INOUT</code> and <code>0UT</code> parameters,
if any.</1i>

If the <code>execute</code> method returns true, the pending result set
can be obtained by calling <code>getResultList</code> or
<code>getSingleResult</code>.</1i>

The <code>hasMoreResults</code> method can then be used to test
for further results.</1i>

EE R R I R I HE N S R N T R R T R S S N R S N I S N R I N N N I N N R N N N N R

142 Jakarta Persistence

L R R R R R N N R RN S R N N N N SR N R N N N S T N N I I

*

*
*/
pub

If <code>execute</code> or <code>hasMoreResults</code> returns false,

the <code>getUpdateCount</code> method can be called to obtain the
pending result if it is an update count. The <code>getUpdateCount</code>
method will return either the update count (zero or greater) or -1

if there is no update count (i.e., either the next result is a result set
or there is no next update count).</1i>

For portability, results that correspond to JDBC result sets and

update counts need to be processed before the values of any
<code>INOUT</code> or <code>0UT</code> parameters are extracted.

After results returned through <code>getResultlist</code> and
<code>getUpdateCount</code> have been exhausted, results returned through
<code>INOUT</code> and <code>0UT</code> parameters can be retrieved.</1li>

The <code>getOutputParameterValue</code> methods are used to retrieve

the values passed back from the procedure through <code>INOUT</code>

and <code>0UT</code> parameters.</1i>

When using <code>REF_CURSOR</code> parameters for result sets the

update counts should be exhausted before calling <code>getResultlList</code>

to retrieve the result set. Alternatively, the <code>REF_CURSOR</code>
result set can be retrieved through <code>getOutputParameterValue</code>.
Result set mappings will be applied to results corresponding to

<code>REF_CURSOR</code> parameters in the order the <code>REF_CURSOR</code>

parameters were registered with the query.</1i>

In the simplest case, where results are returned only via
<code>INOUT</code> and <code>0UT</code> parameters, <code>execute</code>
can be followed immediately by calls to
<code>getOutputParameterValue</code>.</1i>

@see Query
@see Parameter

@since 2.1

lic interface StoredProcedureQuery extends Query {

/**

Set a query property or hint. The hints elements may be used
to specify query properties and hints. Properties defined by
this specification must be observed by the provider.
Vendor-specific hints that are not recognized by a provider
must be silently ignored. Portable applications should not
rely on the standard timeout hint. Depending on the database
in use, this hint may or may not be observed.

* % X * * X *

3.10. Query APIs

Jakarta Persistence 143

3.10. Query APIs

*

@param hintName name of the property or hint

@param value value for the property or hint

@return the same query instance

@throws IllegalArgumentException if the second argument is not
valid for the implementation

*

* % F

*/
StoredProcedureQuery setHint(String hintName, Object value);

/**

* Bind the value of a <code>Parameter</code> object.

* @param param parameter object

* @param value parameter value

* @return the same query instance

@throws IllegalArgumentException if the parameter does not

*

* correspond to a parameter of the query

*/

<T> StoredProcedureQuery setParameter(Parameter<T> param,
T value);

/**

* Bind an instance of <code>java.util.Calendar</code> to a <code>Parameter</code>
object.

* @param param parameter object

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter does not

* correspond to a parameter of the query

*/

StoredProcedureQuery setParameter(Parameter<Calendar> param,
Calendar value,
TemporalType temporalType);

/**

* Bind an instance of <code>java.util.Date</code> to a <code>Parameter</code>
object.

* @param param parameter object
@param value parameter value

*

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArqgumentException if the parameter does not
* correspond to a parameter of the query

*/

StoredProcedureQuery setParameter(Parameter<Date> param,
Date value,
TemporalType temporalType);

/**

144 Jakarta Persistence

3.10. Query APIs

*

Bind an arqument value to a named parameter.
* @param name parameter name

* @param value parameter value

* @return the same query instance

* @throws IllegalArqgumentException if the parameter name does
* not correspond to a parameter of the query or if the
* argument is of incorrect type

*/

StoredProcedureQuery setParameter(String name, Object value);

/**

* Bind an instance of <code>java.util.Calendar</code> to a named parameter.
* @param name parameter name
@param value parameter value
@param temporalType temporal type
@return the same query instance
@throws IllegalArqgumentException if the parameter name does
not correspond to a parameter of the query or if the
value arqument is of incorrect type

* X %X * X

*

*/

StoredProcedureQuery setParameter(String name,
Calendar value,
TemporalType temporalType);

/'k*

*

Bind an instance of <code>java.util.Date</code> to a named parameter.

@param name parameter name

@param value parameter value

@param temporalType temporal type

@return the same query instance

@throws IllegalArgumentException if the parameter name does
not correspond to a parameter of the query or if the

* value arqument is of incorrect type

*/

StoredProcedureQuery setParameter(String name,

Date value,

TemporalType temporalType);

* X % *

*

*

/'k*

Bind an arqument value to a positional parameter.

@param position position

@param value parameter value

@return the same query instance

* @throws IllegalArgumentException if position does not

* correspond to a positional parameter of the query
* or if the argument is of incorrect type

* X ok

*

*/
StoredProcedureQuery setParameter(int position, Object value);

Jakarta Persistence 145

3.10. Query APIs

/**

* Bind an instance of <code>java.util.Calendar</code> to a positional
* parameter.

* @param position position

*

@param value parameter value

@param temporallype temporal type

@return the same query instance

@throws IllegalArgumentException if position does not
correspond to a positional parameter of the query or
if the value argument is of incorrect type

*

StoredProcedureQuery setParameter(int position,
Calendar value,
TemporalType temporalType);

/**

* Bind an instance of <code>java.util.Date</code> to a positional parameter.
@param position position

*

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArqumentException if position does not

* correspond to a positional parameter of the query or
* if the value argument is of incorrect type

*/

StoredProcedureQuery setParameter(int position,
Date value,
TemporalType temporalType);

/**

Set the flush mode type to be used for the query execution.
The flush mode type applies to the query regardless of the
flush mode type in use for the entity manager.

@param flushMode flush mode

* @return the same query instance

*/

StoredProcedureQuery setFlushMode(FlushModeType flushMode);

* X % *

/**

* Register a positional parameter.
A1l parameters must be registered.
* @param position parameter position
* @param type type of the parameter
* @param mode parameter mode

* @return the same query instance

*

*/
StoredProcedureQuery registerStoredProcedureParameter(

146 Jakarta Persistence

3.10. Query APIs

int position,
Class type,
ParameterMode mode);

/**

* Register a named parameter.

@param parameterName name of the parameter as registered or
specified in metadata

@param type type of the parameter

@param mode parameter mode

@return the same query instance

*

* X % F

*/

StoredProcedureQuery registerStoredProcedureParameter(
String parameterName,
Class type,
ParameterMode mode);

/**

*

Retrieve a value passed back from the procedure

* through an INOUT or OUT parameter.

* For portability, all results corresponding to result sets

* and update counts must be retrieved before the values of

* output parameters.

* @param position parameter position

* @return the result that is passed back through the parameter
* @throws IllegalArgumentException if the position does

* not correspond to a parameter of the query or is

* not an INOUT or OUT parameter

*/

Object getOutputParameterValue(int position);

/'k'k
Retrieve a value passed back from the procedure
through an INOUT or OUT parameter.

For portability, all results corresponding to result sets
and update counts must be retrieved before the values of

* X ok

*

* output parameters.

* @param parameterName name of the parameter as registered or
* specified in metadata

* @return the result that is passed back through the parameter
* @throws IllegalArgumentException if the parameter name does
* not correspond to a parameter of the query or is

* not an INOUT or OUT parameter

*/

Object getOutputParameterValue(String parameterName);

/**

* Return true if the first result corresponds to a result set,

Jakarta Persistence 147

3.10. Query APIs

and false if it is an update count or if there are no results

other than through INOUT and OUT parameters, if any.

@return true if first result corresponds to result set

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

* 0% Xk X X F X X

*/
boolean execute();

/*'k

Return the update count of -1 if there is no pending result or
if the first result is not an update count. The provider will
call <code>execute</code> on the query if needed.
@return the update count or -1 if there is no pending result
or if the next result is not an update count.
@throws TransactionRequiredException if there is
no transaction or the persistence context has not
been joined to the transaction
@throws QueryTimeoutException if the statement execution
exceeds the query timeout value set and only
the statement is rolled back
@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

ERE R T B T R R R R R

*/
int executeUpdate();

/**

Retrieve the list of results from the next result set.

The provider will call <code>execute</code> on the query

if needed.

A <code>REF_CURSOR</code> result set, if any, will be retrieved

in the order the <code>REF_CURSOR</code> parameter was

registered with the query.

@return a list of the results or null is the next item is not

a result set

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

* 0% Xk X X F X X * X X * X

*/
List getResultlList();

148 Jakarta Persistence

3.10. Query APIs

/*'k

Retrieve a single result from the next result set.
The provider will call <code>execute</code> on the query
if needed.
A <code>REF_CURSOR</code> result set, if any, will be retrieved
in the order the <code>REF_CURSOR</code> parameter was
registered with the query.
@return the result or null if the next item is not a result set
@throws NoResultException if there is no result in the next
result set
@throws NonUniqueResultException if more than one result
@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back
@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

EBE S R R R T T R R R R R R S

*/
Object getSingleResult();

/**

Return true if the next result corresponds to a result set,
and false if it is an update count or if there are no results
other than through INOUT and OUT parameters, if any.
@return true if next result corresponds to result set
@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back
@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

* 0% X F X X F X X *

*/
boolean hasMoreResults();

/**

* Return the update count or -1 if there is no pending result
* or if the next result is not an update count.

* @return update count or -1 if there is no pending result or if
* the next result is not an update count

* @throws QueryTimeoutException if the query execution exceeds
* the query timeout value set and only the statement is
* rolled back

* @throws PersistenceException if the query execution exceeds

* the query timeout value set and the transaction

*

is rolled back
*/
int getUpdateCount();

Jakarta Persistence 149

3.10. Query APIs

3.10.7. Query Execution

Jakarta Persistence query language, Criteria API, and native SQL select queries are executed using the
getResultList and getSingleResult methods. Update and delete operations (update and delete “queries”)
are executed using the executeUpdate method.

» For TypedQuery instances, the query result type is determined in the case of criteria queries by the
type of the query specified when the CriteriaQuery object is created, as described in Section 6.5.1. In
the case of Jakarta Persistence query language queries, the type of the result is determined by the
resultClass argument to the createQuery or createNamedQuery method, and the select list of the
query must contain only a single item which must be assignable to the specified type.

* For Query instances, the elements of a query result whose select list consists of more than one
select expression are of type Object[]. If the select list consists of only one select expression, the
elements of the query result are of type Object. When native SQL queries are used, the SQL result
set mapping (see Section 3.10.16), determines how many items (entities, scalar values, etc.) are
returned. If multiple items are returned, the elements of the query result are of type Object[]. If
only a single item is returned as a result of the SQL result set mapping or if a result class is
specified, the elements of the query result are of type Object.

Stored procedure queries can be executed using the getResultList, getSingleResult, and execute
methods. Stored procedures that perform only updates or deletes can be executed using the
executeUpdate method. Stored procedure query execution is described in detail in Section 3.10.17.3.

An IllegalArgumentException is thrown if a parameter instance is specified that does not correspond to
a parameter of the query, if a parameter name is specified that does not correspond to a named
parameter of the query, if a positional value is specified that does not correspond to a positional
parameter of the query, or if the type of the parameter is not valid for the query. This exception may be
thrown when the parameter is bound, or the execution of the query may fail. See Section 3.10.11,
Section 3.10.12, and Section 3.10.13 for supported parameter usage.

The effect of applying setMaxResults or setFirstResult to a query involving fetch joins over collections
is undefined. The use of setMaxResults and setFirstResult is not supported for stored procedure
queries.

Query and TypedQuery methods other than the executeUpdate method are not required to be invoked
within a transaction context, unless a lock mode other than LockModeType.NONE has been specified
for the query. In particular, the getResultList and getSingleResult methods are not required to be
invoked within a transaction context unless such a lock mode has been specified for the query”". If an
entity manager with transaction-scoped persistence context is in use, the resulting entities will be
detached; if an entity manager with an extended persistence context is used, they will be managed. See
Chapter 7 for further discussion of entity manager use outside a transaction and persistence context

types.

150 Jakarta Persistence

3.10. Query APIs

Whether a StoredProcedureQuery should be invoked in a transaction context should be determined by
the transactional semantics and/or requirements of the stored procedure implementation and the
database in use. In particular, problems may occur if the stored procedure initiates a transaction and a
transaction is already in effect. The state of any entities returned by the stored procedure query
invocation is determined as decribed above.

Runtime exceptions other than the NoResultException, = NonUniqueResultException,
QueryTimeoutException, and LockTimeoutException thrown by the methods of the Query, TypedQuery,
and StoredProcedureQuery interfaces other than those methods specified below cause the current
transaction to be marked for rollback if the persistence context is joined to the transaction. On
database platforms on which a query timeout causes transaction rollback, the persistence provider
must throw the PersistenceException instead of the QueryTimeoutException.

Runtime exceptions thrown by the following methods of the Query, TypedQuery, and
StoredProcedureQuery interfaces do not cause the current transaction to be marked for rollback:
getParameters, getParameter, getParameterValue, getOutputParameterValue, getLockMode.

Runtime exceptions thrown by the methods of the Tuple, TupleElement, and Parameter interfaces do
not cause the current transaction to be marked for rollback.

3.10.7.1. Example

public List findWithName(String name) {
return em.createQuery("SELECT ¢ FROM Customer c¢ WHERE c.name LIKE :custName")
.setParameter("custName", name)
.setMaxResults(10)
.getResultList();

3.10.8. Queries and Flush Mode
The flush mode setting affects the result of a query as follows.

When queries are executed within a transaction, if FlushModeType. AUTO is set on the Query,
TypedQuery, or StoredProcedureQuery object, or if the flush mode setting for the persistence context is
AUTO (the default) and a flush mode setting has not been specified for the query object, the persistence
provider is responsible for ensuring that all updates to the state of all entities in the persistence
context which could potentially affect the result of the query are visible to the processing of the query.
The persistence provider implementation may achieve this by flushing those entities to the database or
by some other means. If FlushModeType.COMMIT is set, the effect of updates made to entities in the
persistence context upon queries is unspecified.

If the persistence context has not been joined to the current transaction, the persistence provider must
not flush to the database regardless of the flush mode setting.

Jakarta Persistence 151

3.10. Query APIs

package jakarta.persistence;

public enum FlushModeType {

/**

* Flushing to occur at transaction commit. The provider may flush
* at other times, but is not required to.

*/

COMMIT,

/**
* (Default) Flushing to occur at query execution.
*/
AUTO

If there is no transaction active, the persistence provider must not flush to the database.

3.10.9. Queries and Lock Mode

The setLockMode method of the Query or TypedQuery interface or the lockMode element of the
NamedQuery annotation may be used to lock the results of a query. A lock is obtained for each entity
specified in the query result (including entities passed to constructors in the query SELECT clause).””

If the lock mode type is PESSIMISTIC_READ, PESSIMISTIC_WRITE, or
PESSIMISTIC_FORCE_INCREMENT, and the query returns scalar data (e.g., the values of entity field or
properties, including scalar data passed to constructors in the query SELECT clause), the underlying
database rows will be locked"””, but the version columns (if any) for any entities corresponding to such
scalar data will not be updated unless the entities themselves are also otherwise retrieved and
updated.

If the lock mode type is OPTIMISTIC or OPTIMISTIC_FORCE_INCREMENT, and the query returns scalar
data, any entities returned by the query will be locked, but no locking will occur for scalar data that
does not correspond to the state of any entity instance in the query result.

If a lock mode other than NONE is specified for a query, the query must be executed within a
transaction (and the persistence context must be joined to the transaction) or the
TransactionRequiredException will be thrown.

Locking is supported for Jakarta Persistence query language queries and criteria queries only. If the
setLockMode or getLockMode method is invoked on a query that is not a Jakarta Persistence query
language select query or a criteria query, the IllegalStateException may be thrown or the query
execution will fail.

152 Jakarta Persistence

3.10. Query APIs

3.10.10. Query Hints

The following hint is defined by this specification for use in query configuration.
jakarta.persistence.query.timeout // time in milliseconds

This hint may be used with the Query, TypedQuery, or StoredProcedureQuery setHint method or the
NamedQuery, NamedNativeQuery, and NamedStoredProcedureQuery annotations. It may also be passed
as a property to the Persistence.createEntityManagerFactory method and used in the properties element
of the persistence.xml file. See Section 3.10.1, Section 8.2.1.9, Section 9.7, Section 10.4. When used in the
createEntityManagerFactory method, the persistence.xml file, and annotations, the timeout hint serves
as a default value which can be selectively overridden by use in the setHint method.

Portable applications should not rely on this hint. Depending on the persistence provider and database
in use, the hint may or may not be observed.

Vendors are permitted to support the use of additional, vendor-specific hints. Vendor-specific hints
must not use the jakarta.persistence namespace. Vendor-specific hints must be ignored if they are not
understood.

3.10.11. Parameter Objects

Parameter objects can be used for criteria queries and for Jakarta Persistence query language queries.

Implementations may support the use of Parameter objects for native queries, however support for
Parameter objects with native queries is not required by this specification. The use of Parameter
objects for native queries will not be portable. The mixing of parameter objects with named or
positional parameters is undefined.

Portable applications should not attempt to reuse a Parameter object obtained from a Query or
TypedQuery instance in the context of a different Query or TypedQuery instance.

3.10.12. Named Parameters

Named parameters can be used for Jakarta Persistence query language queries, for criteria queries
(although use of Parameter objects is to be preferred), and for stored procedure queries that support
named parameters.

Named parameters follow the rules for identifiers defined in Section 4.4.1. Named parameters are case-
sensitive. The mixing of named and positional parameters is undefined.

A named parameter of a Jakarta Persistence query language query is an identifier that is prefixed by
the " : " symbol. The parameter names passed to the setParameter methods of the Query and
TypedQuery interfaces do not include this " : " prefix.

Jakarta Persistence 153

3.10. Query APIs

3.10.13. Positional Parameters

Only positional parameter binding and positional access to result items may be portably used for
native queries, except for stored procedure queries for which named parameters have been defined.
When binding the values of positional parameters, the numbering starts as “ 1 ”. It is assumed that for
native queries the parameters themselves use the SQL syntax (i.e., “ ?”, rather than “ ?1).

The use of positional parameters is not supported for criteria queries.

3.10.14. Named Queries

Named queries are static queries expressed in metadata or queries registered by means of the
EntityManagerFactory addNamedQuery method. Named queries can be defined in the Jakarta
Persistence query language or in SQL. Query names are scoped to the persistence unit.

The following is an example of the definition of a named query defined in metadata:

(

name="findA11CustomersWithName",
query="SELECT ¢ FROM Customer c WHERE c.name LIKE :custName"

The following is an example of the use of a named query:

public EntityManager em;
/] ...

customers = em.createNamedQuery("findAl1CustomersWithName")
.setParameter("custName", "Smith")
.getResultList();

3.10.15. Polymorphic Queries

By default, all queries are polymorphic. That is, the FROM clause of a query designates not only
instances of the specific entity class(es) to which it explicitly refers, but subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the query conditions.

For example, the following query returns the average salary of all employees, including subtypes of
Employee, such as Manager and Exempt.

select avg(e.salary) from Employee e where e.salary > 80000

154 Jakarta Persistence

3.10. Query APIs

Entity type expressions, described in Section 4.6.17.5, as well as the use of downcasting, described in
Section 4.4.9, can be used to restrict query polymorphism.

3.10.16. SQL Queries

Queries may be expressed in native SQL. The result of a native SQL query may consist of entities,
unmanaged instances created via constructors, scalar values, or some combination of these.

The SQL query facility is intended to provide support for those cases where it is

o necessary to use the native SQL of the target database in use (and/or where the
Jakarta Persistence query language cannot be used). Native SQL queries are not
expected to be portable across databases.

3.10.16.1. Returning Managed Entities from Native Queries

The persistence provider is responsible for performing the mapping between the values returned by
the SQL query and entity attributes in accordance with the object/relational mapping metadata for the
entity or entities. In particular, the names of the columns in the SQL result are used to map to the
entity attributes as defined by this metadata. This mapping includes the mapping of the attributes of
any embeddable classes that are part of the non-collection-valued entity state and attributes
corresponding to foreign keys contained as part of the entity state™,

When an entity is to be returned from a native query, the SQL statement should select all of the
columns that are mapped to the entity object. This should include foreign key columns to related
entities. The results obtained when insufficient data is available are undefined.

In the simplest case—i.e., when the results of the query are limited to entities of a single entity class
and the mapping information can be derived from the columns of the SQL result and the
object/relational mapping metadata—it is sufficient to specify only the expected class of the entity
result.

The following example illustrates the case where a native SQL query is created dynamically using the
createNativeQuery method and the entity class that specifies the type of the result is passed in as an
argument.

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = 'widget')",
com.acme.Order.class);

+

When executed, this query will return a collection of all Order entities for items named “widget”.

The SqlResultSetMapping metadata annotation—which is designed to handle more complex cases—can
be used as an alternative here. See Section 10.4.4 for the definition of the SqlResultSetMapping

Jakarta Persistence 155

3.10. Query APIs

metadata annotation and related annotations.

For the query shown above, the SqlResultSetMapping metadata for the query result type might be
specified as follows:

(

name="WidgetOrderResults",
entities= (entityClass=com.acme.Order.class))

The same results as produced by the query above can then obtained by the following:

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = 'widget')",
"WidgetOrderResults");

When multiple entities are returned by a SQL query or when the column names of the SQL result do
not correspond to those of the object/relational mapping metadata, a SqlResultSetMapping metadata
definition must be provided to specify the entity mapping.

The following query and SqlResultSetMapping metadata illustrates the return of multiple entity types.
It assumes default metadata and column name defaults.

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description
"FROM Order o, Item i " +
"WHERE (o.quantity > 25) AND (o.item = i.id)",
"OrderItemResults");

+

(name="0OrderItemResults", entities={
(entityClass=com.acme.Order.class),
(entityClass=com.acme.Item.class)

1))

When the column names of the SQL result do not correspond to those of the object/relational mapping
metadata, more explicit SQL result mapping metadata must be provided to enable the persistence
provider runtime to map the JDBC results into the expected objects. This might arise, for example,
when column aliases must be used in the SQL SELECT clause when the SQL result would otherwise
contain multiple columns of the same name or when columns in the SQL result are the results of
operators or functions. The FieldResult annotation element within the EntityResult annotation is used
to specify the mapping of such columns to entity attributes.

The following example combining multiple entity types includes aliases in the SQL statement. This

156 Jakarta Persistence

3.10. Query APIs

requires that the column names be explicitly mapped to the entity fields corresponding to those
columns. The FieldResult annotation is used for this purpose.

Query q = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"0.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.id, i.name, i.description " +
"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",
"OrderItemResults");

@SqlResultSetMapping(name="0rderItemResults", entities={
@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item", column="order item")}),
@EntityResult(entityClass=com.acme.Item.class)

1))

When the returned entity type contains an embeddable class, the FieldResult element must use a dot (“
. ”) notation to indicate which column maps to which field or property of the contained embeddable.

Example:

Query q = em.createNativeQuery(
"SELECT c.id AS customer_id, " +

"c.street AS customer street,
"c.city AS customer_city, " +
"c.state AS customer state, " +
"c.status AS customer _status " +
"FROM Customer c " +
"WHERE c.status = 'GOLD' ",

"CustomerResults");

+

@SqlResultSetMapping(name="CustomerResults”, entities={
@EntityResult(entityClass=com.acme.Customer.class, fields={
@FieldResult(name="id", column="customer_id"),
@FieldResult(name="address.street", column="customer_street"),
@FieldResult(name="address.city", column="customer_city"),
@FieldResult(name="address.state", column="customer_state"),
@FieldResult(name="status", column="customer status")
b
b

Jakarta Persistence 157

3.10. Query APIs

When the returned entity type is the owner of a single-valued relationship and the foreign key is a
composite foreign key (composed of multiple columns), a FieldResult element should be used for each
of the foreign key columns. The FieldResult element must use the dot (“. ”) notation form to indicate
the column that maps to each property or field of the target entity primary key.

If the target entity has a primary key of type IdClass, this specification takes the form of the name of
the field or property for the relationship, followed by a dot (“. *), followed by the name of the field or
property of the primary key in the target entity. The latter will be annotated with Id, as specified in
Section 11.1.22.

Example:

Query q = em.createNativeQuery(
“SELECT o.id AS order_id, " +
"0.quantity AS order_quantity,

"o.item_id AS order item_id, " +

"o.item_name AS order_item_name, " +

"i.id, i.name, i.description " +

"FROM Order o, Item i " +

"WHERE (order_quantity > 25) AND (order_item_id = i.id) " +
"AND (order_item name = i.name)",

"OrderItemResults");

+

(name="0OrderItemResults", entities={
(entityClass=com.acme.Order.class, fields={
(name="1id", column="order_id"),
(name="quantity", column="order_quantity"),
(name="1item.id", column="order item_id")}),
(name="1item.name", column="order_item_name")}),
(entityClass=com.acme.Item.class)

1))

If the target entity has a primary key of type EmbeddedId, this specification is composed of the name of
the field or property for the relationship, followed by a dot (“. ”), followed by the name or the field or
property of the primary key (i.e., the name of the field or property annotated as EmbeddedId), followed
by the name of the corresponding field or property of the embedded primary key class.

Example:

158 Jakarta Persistence

3.10. Query APIs

Query q = em.createNativeQuery(
"SELECT o.id AS order_id, " +

"0.quantity AS order_quantity,
"o.item_id AS order_item_id, " +
"o.item_name AS order_item_name,
"i.id, i.name, i.description " +
"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item_id = i.id) AND (order_item_name =

i.name)",

"OrderItemResults");

+

+

(name="0OrderItemResults", entities={
(entityClass=com.acme.Order.class, fields={

(name="1id", column="order_id"),

(name="quantity", column="order_quantity"),

(name="1item.itemPk.id", column="order_item_id")}),

(name="1item.itemPk.name", column="order_item_name")}),
(entityClass=com.acme.Item.class)

1))

The FieldResult elements for the composite foreign key are combined to form the primary key
EmbeddedId class for the target entity. This may then be used to subsequently retrieve the entity if the
relationship is to be eagerly loaded.

The dot-notation form is not required to be supported for any usage other than for embeddables,
composite foreign keys, or composite primary keys.

3.10.16.2. Returning Unmanaged Instances

Instances of other classes (including non-managed entity instances) as well as scalar results can be
returned by a native query. These can be used singly, or in combination, including with entity results.

Scalar Results

Scalar results can be included in the query result by specifying the ColumnResult annotation element
of the SqlResultSetMapping annotation. The intended type of the result can be specified using the type
element of the ColumnResult annotation.

Jakarta Persistence 159

3.10. Query APIs

Query q = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"0.quantity AS order_quantity,
"o.item AS order_item, " +
"i.name AS item_name, " +
"i.availabilityDate AS item_shipdate " +
"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",
"OrderResults");

+

@SqlResultSetMapping(
name="0rderResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item", column="order_item")}

)}

columns={
@ColumnResult(name="1item_name"),
@ColumnResult(name="1item_shipdate"”, type=java.util.Date.class)

1))

Constructor Results

The mapping to constructors is specified using the ConstructorResult annotation element of the
SqlResultSetMapping annotation. The targetClass element of the ConstructorResult annotation specifies
the class whose constructor corresponds to the specified columns. All columns corresponding to
arguments of the intended constructor must be specified using the columns element of the
ConstructorResult annotation in the same order as that of the argument list of the constructor. Any
entities returned as constructor results will be in either the new or the detached state, depending on
whether a primary key is retrieved for the constructed object.

Example:

160 Jakarta Persistence

3.10. Query APIs

Query q = em.createNativeQuery(
"SELECT c.id, c.name, COUNT(o) as orderCount, AVG(o.price) AS avgOrder " +
"FROM Customer c, Orders o " +
"WHERE o0.cid = c.id " +
"GROUP BY c.id, c.name",
"CustomerDetailsResult");

(name="CustomerDetailsResult", classes={
(targetClass=com.acme.CustomerDetails.class, columns={
(name="1id"),
(name="name"),
(name="orderCount"),
(name="avgOrder", type=Double.class)})
b

3.10.16.3. Combinations of Result Types

When a SqlResultSetMapping specifies more than one mapping type (i.e., more than one of EntityResult,
ConstructorResult, ColumnResult), then for each row in the SQL result, the query execution will result
in an Object[] instance whose elements are as follows, in order: any entity results (in the order in
which they are defined in the entities element); any instances of classes corresponding to constructor
results (in the order defined in the classes element); and any instances corresponding to column
results (in the order defined in the columns element). If there are any columns whose result mappings
have not been specified, they are ignored.

3.10.16.4. Restrictions

When an entity is being returned, the SQL statement should select all of the columns that are mapped
to the entity object. This should include foreign key columns to related entities. The results obtained
when insufficient data is available are undefined. A SQL result set mapping must not be used to map
results to the non-persistent state of an entity.

The use of named parameters is not defined for native SQL queries. Only positional parameter binding
for SQL queries may be used by portable applications.

3.10.17. Stored Procedures
The StoredProcedureQuery interface supports the use of database stored procedures.

Stored procedures can be specified either by means of the NamedStoredProcedureQuery annotation or
dynamically. Annotations for the specification of stored procedures are described in Section 10.4.3.

3.10.17.1. Named Stored Procedure Queries

Unlike in the case of a named native query, the NamedStoredProcedureQuery annotation names a
stored procedure that exists in the database rather than providing a stored procedure definition. The

Jakarta Persistence 161

3.10. Query APIs

NamedStoredProcedureQuery annotation specifies the types of all parameters to the stored procedure,
their corresponding parameter modes (IN, OUT, INOUT, REF_CURSOR"), and how result sets, if any,
are to be mapped. The name that is assigned to the stored procedure in the
NamedStoredProcedureQuery annotation is passed as an argument to the
createNamedStoredProcedureQuery method to create an executable StoredProcedureQuery object.

A stored procedure may return more than one result set. As with native queries, the mapping of result
sets can be specified either in terms of a resultClasses or as a resultSetMappings annotation element. If
there are multiple result sets, it is assumed that they will be mapped using the same mechanism —e.g.,
all via a set of result class mappings or all via a set of result set mappings. The order of the
specification of these mappings must be the same as the order in which the result sets will be returned
by the stored procedure invocation. If the stored procedure returns one or more result sets and no
resultClasses or resultSetMappings element has been specified, any result set will be returned as a list
of type Object[]. The combining of different strategies for the mapping of stored procedure result sets is
undefined.

StoredProcedureParameter metadata needs to be provided for all parameters. Parameters must be
specified in the order in which they occur in the parameter list of the stored procedure. If parameter
names are used, the parameter name is used to bind the parameter value and to extract the output
value (if the parameter is an INOUT or OUT parameter). If parameter names are not specified, it is
assumed that positional parameters are used. The mixing of named and positional parameters is
undefined.

3.10.17.2. Dynamically-specified Stored Procedure Queries

If the stored procedure is not defined using metadata, parameter and result set information must be
provided dynamically.

All parameters of a dynamically-specified stored procedure query must be registered using the
registerStoredProcedureParameter method of the StoredProcedureQuery interface.

Result set mapping information can be provided by means of the createStoredProcedureQuery method.

3.10.17.3. Stored Procedure Query Execution

Stored procedure query execution can be controlled as described below.

The setParameter methods are used to set the values of all required IN and INOUT parameters. It is not
required to set the values of stored procedure parameters for which default values have been defined
by the stored procedure.

When getResultList and getSingleResult are called on a StoredProcedureQuery object, the persistence
provider will call execute on an unexecuted stored procedure query before processing getResultList or
getSingleResult.

When executeUpdate is called on a StoredProcedureQuery object, the persistence provider will call
execute on an unexecuted stored procedure query followed by getUpdateCount. The results of

162 Jakarta Persistence

3.11. Summary of Exceptions

executeUpdate will be those of getUpdateCount.

The execute method supports both the simple case where scalar results are passed back only via INOUT
and OUT parameters as well as the most general case (multiple result sets and/or update counts,
possibly also in combination with output parameter values).

The execute method returns true if the first result is a result set, and false if it is an update count or
there are no results other than through INOUT and OUT parameters, if any.

If the execute method returns true, the pending result set can be obtained by calling getResultList or
getSingleResult. The hasMoreResults method can then be used to test for further results.

If execute or hasMoreResults returns false, the getUpdateCount method can be called to obtain the
pending result if it is an update count. The getUpdateCount method will return either the update count
(zero or greater) or -1 if there is no update count (i.e., either the next result is a result set or there is no
next update count).

For portability, results that correspond to JDBC result sets and update counts need to be processed
before the values of any INOUT or OUT parameters are extracted.

After results returned through getResultList and getUpdateCount have been exhausted, results
returned through INOUT and OUT parameters can be retrieved.

The getOutputParameterValue methods are used to retrieve the values passed back from the procedure
through INOUT and OUT parameters.

When using REF_CURSOR parameters for result sets, the update counts should be exhausted before
calling getResultList to retrieve the result set. Alternatively, the REF CURSOR result set can be retrieved
through getOutputParameterValue. Result set mappings will be applied to results corresponding to
REF_CURSOR parameters in the order the REF_CURSOR parameters were registered with the query.

In the simplest case, where results are returned only via INOUT and OUT parameters, execute can be
followed immediately by calls to getOutputParameterValue.

3.11. Summary of Exceptions

The following is a summary of the exceptions defined by this specification:
PersistenceException

The PersistenceException is thrown by the persistence provider when a problem occurs. It may be
thrown to report that the invoked operation could not complete because of an unexpected error (e.g.,
failure of the persistence provider to open a database connection).

All other exceptions defined by this specification are subclasses of the PersistenceException. All
instances of PersistenceException except for instances of NoResultException,
NonUniqueResultException, LockTimeoutException , and QueryTimeoutException will cause the current

Jakarta Persistence 163

3.11. Summary of Exceptions

transaction, if one is active and the persistence context has been joined to it, to be marked for rollback.
TransactionRequiredException

The TransactionRequiredException is thrown by the persistence provider when a transaction is
required but is not active.

OptimisticLockException

The OptimisticLockException is thrown by the persistence provider when an optimistic locking conflict
occurs. This exception may be thrown as part of an API call, at flush, or at commit time. The current
transaction, if one is active, will be marked for rollback.

PessimisticLockException

The PessimisticLockException is thrown by the persistence provider when a pessimistic locking conflict
occurs. The current transaction will be marked for rollback. Typically the PessimisticLockException
occurs because the database transaction has been rolled back due to deadlock or because the database
uses transaction-level rollback when a pessimistic lock cannot be granted.

LockTimeoutException

The LockTimeoutException is thrown by the persistence provider when a pessimistic locking conflict
occurs that does not result in transaction rollback. Typically this occurs because the database uses
statement-level rollback when a pessimistic lock cannot be granted (and there is no deadlock). The
LockTimeoutException does not cause the current transaction to be marked for rollback.

RollbackException
The RollbackException is thrown by the persistence provider when EntityTransaction.commit fails. __
EntityExistsException

The EntityExistsException may thrown by the persistence provider when the persist operation is
invoked and the entity already exists. The EntityExistsException may be thrown when the persist
operation is invoked, or the EntityExistsException or another PersistenceException may be thrown at
commit time. The current transaction, if one is active and the persistence context has been joined to it,
will be marked for rollback.

EntityNotFoundException

The EntityNotFoundException is thrown by the persistence provider when an entity reference obtained
by getReference is accessed but the entity does not exist. It is thrown by the refresh operation when the
entity no longer exists in the database. It is also thrown by the lock operation when pessimistic locking
is used and the entity no longer exists in the database. The current transaction, if one is active and the
persistence context has been joined to it, will be marked for rollback.

NoResultException

164 Jakarta Persistence

3.11. Summary of Exceptions

The NoResultException is thrown by the persistence provider when Query.getSingleResult or
TypedQuery.getSingleResult is invoked and there is no result to return. This exception will not cause the
current transaction, if one is active, to be marked for rollback.

NonUniqueResultException

The NonUniqueResultException is thrown by the persistence provider when Query.getSingleResult or
TypedQuery.getSingleResult is invoked and there is more than one result from the query. This exception
will not cause the current transaction, if one is active, to be marked for rollback.

QueryTimeoutException

The QueryTimeoutException is thrown by the persistence provider when a query times out and only
the statement is rolled back. The QueryTimeoutException does not cause the current transaction, if one
is active, to be marked for rollback.

[26] This includes, for example. modifications to persistent attributes of type char[] and byte[].

[27] This might be an issue if unique constraints (such as those described for the default mappings in Section 2.10.3.1
and Section 2.10.5.1) were not applied in the definition of the object/relational mapping.

[28] Note that when a new transaction is begun, the managed objects in an extended persistence context are not
reloaded from the database.

[29] These are instances that were persistent in the database at the start of the transaction.

[30] It is unspecified as to whether instances that were not persistent in the database behave as new instances or
detached instances after rollback. This may be implementation-dependent.

[31] Applications may require that database isolation levels higher than read-committed be in effect. The configuration
of the setting database isolation levels, however, is outside the scope of this specification.

[32] Bulk update statements, however, are permitted to set the value of version attributes. See Section 4.10.

[33] This includes owned relationships maintained in join tables.

[34] Such additional mechanisms may be standardized by a future release of this specification.

[35] Implementations are permitted to use database mechanisms other than locking to achieve the semantic effects
described here, for example, multiversion concurrency control mechanisms.

[36] This is achieved by using a lock with LockModeType.PESSIMISTIC_WRITE or
LockModeType.PESSIMISTIC_FORCE_INCREMENT as described in Section 3.4.4.

[37] For example, a persistence provider may use an underlying database platform’s SELECT FOR UPDATE statements to
implement pessimistic locking if that construct provides appropriate semantics, or the provider may use an isolation
level of repeatable read.

[38] The lock mode type NONE may be specified as a value of lock mode arguments and also provides a default value for
annotations.

[39] Databases concurrency control mechanisms that provide comparable semantics, e.g., multiversion concurrency
control, can be used by the provider.

[40] The persistence provider is not required to flush the entity to the database immediately.

[41] CDI is enabled by default in Jakarta EE. See the Jakarta EE specification [6].

[42] The persistence provider may support CDI injection into entity listeners in other environments in which the
BeanManager is available.

[43] For example, if a transaction commit occurs as a result of the normal termination of a session bean business
method with transaction attribute RequiresNew, the PostPersist and PostRemove callbacks are executed in the naming
context, the transaction context, and the security context of that component.

[44] Note that this caution applies also to the actions of objects that might be injected into an entity listener

[45] The semantics of such operations may be standardized in a future release of this specification.

[46] Excluded listeners may be reintroduced on an entity class by listing them explicitly in the EntityListeners
annotation or XML entity-listeners element.

Jakarta Persistence 165

3.11. Summary of Exceptions

[47] If a method overrides an inherited callback method but specifies a different lifecycle event or is not a lifecycle
callback method, the overridden method will not be invoked.

[48] We plan to provide a facility for more complex attribute conversions in a future release of this specification.

[49] CDI is enabled by default in Jakarta EE. See the Jakarta EE specification [6].

[50] The persistence provider may support CDI injection into attribute converters in other environments in which the
BeanManager is available.

[51] A lock mode is specified for a query by means of the setLockMode method or by specifying the lock mode in the
NamedQuery annotation.

[52] Note that the setLockMode method may be called more than once (with different values) on a Query or TypedQuery
object.

[53] Note that locking will not occur for data passed to aggregate functions. Further, queries involving aggregates with
pessimistic locking may not be supported on all database platforms.

[54] Support for joins is currently limited to single-valued relationships that are mapped directly—i.e., not via join
tables.

[55] Note that REF_CURSOR parameters are used by some databases to return result sets from stored procedures.

166 Jakarta Persistence

4.1. Overview

Chapter 4. Query Language

The Jakarta Persistence query language is a string-based query language used to define queries over
entities and their persistent state. It enables the application developer to specify the semantics of
queries in a portable way, independent of the particular database schema in use in an enterprise
environment. The full range of the language may be used in both static and dynamic queries.

This chapter provides the full definition of the Jakarta Persistence query language.

4.1. Overview

The Jakarta Persistence query language is a query specification language for string-based dynamic
queries and static queries expressed through metadata. It is used to define queries over the persistent
entities defined by this specification and their persistent state and relationships.

The Jakarta Persistence query language can be compiled to a target language, such as SQL, of a
database or other persistent store. This allows the execution of queries to be shifted to the native
language facilities provided by the database, instead of requiring queries to be executed on the
runtime representation of the entity state. As a result, query methods can be optimizable as well as
portable.

The query language uses the abstract persistence schema of entities, including their embedded objects
and relationships, for its data model, and it defines operators and expressions based on this data
model. It uses a SQL-like syntax to select objects or values based on abstract schema types and
relationships. It is possible to parse and validate queries before entities are deployed.

The term abstract persistence schema refers to the persistent schema abstraction
o (persistent entities, their state, and their relationships) over which Jakarta Persistence

queries operate. Queries over this persistent schema abstraction are translated into

queries that are executed over the database schema to which entities are mapped.

Queries may be defined in metadata annotations or the XML descriptor. The abstract schema types of a
set of entities can be used in a query if the entities are defined in the same persistence unit as the

query. Path expressions allow for navigation over relationships defined in the persistence unit.

o A persistence unit defines the set of all classes that are related or grouped by the
application and which must be colocated in their mapping to a single database.

4.2. Statement Types

A Jakarta Persistence query language statement may be either a select statement, an update statement,
or a delete statement.

Jakarta Persistence 167

4.2. Statement Types

o This chapter refers to all such statements as “queries”. Where it is important to
distinguish among statement types, the specific statement type is referenced.

In BNF syntax, a query language statement is defined as:
QL_statement :: = select_statement | update_statement | delete_statement
Any Jakarta Persistence query language statement may be constructed dynamically or may be

statically defined in a metadata annotation or XML descriptor element.

All statement types may have parameters.

4.2.1. Select Statements

A select statement is a string which consists of the following clauses:

* a SELECT clause, which determines the type of the objects or values to be selected.

* a FROM clause, which provides declarations that designate the domain to which the expressions
specified in the other clauses of the query apply.

* an optional WHERE clause, which may be used to restrict the results that are returned by the
query.
» an optional GROUP BY clause, which allows query results to be aggregated in terms of groups.

* an optional HAVING clause, which allows filtering over aggregated groups.

* an optional ORDER BY clause, which may be used to order the results that are returned by the
query.

In BNF syntax, a select statement is defined as:

select_statement :: = select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]

A select statement must always have a SELECT and a FROM clause. The square brackets [] indicate that
the other clauses are optional.

4.2.2. Update and Delete Statements

Update and delete statements provide bulk operations over sets of entities.

In BNF syntax, these operations are defined as:

168 Jakarta Persistence

4.3. Abstract Schema Types and Query Domains

update_clause [where_clause]
delete _clause [where_clause]

update_statement ::
delete_statement ::

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE
clause may be used to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.10.

4.3. Abstract Schema Types and Query Domains

The Jakarta Persistence query language is a typed language, and every expression has a type. The type
of an expression is derived from the structure of the expression, the abstract schema types of the
identification variable declarations, the types to which the persistent attributes evaluate, and the types
of literals.

The abstract schema type of an entity or embeddable is derived from its class and the metadata
information provided by Java language annotations or in the XML descriptor.

Informally, the abstract schema type of an entity or embeddable can be characterized as follows:

* For every non-relationship persistent field or get accessor method (for a persistent property) of the
class, there is a field (“state field”) whose abstract schema type corresponds to that of the field or
the result type of the accessor method.

» For every persistent relationship field or get accessor method (for a persistent relationship
property) of the class, there is a field (“association field”) whose type is the abstract schema type of
the related entity (or, if the relationship is a one-to-many or many-to-many, a collection of such).

Abstract schema types are specific to the query language data model. The persistence provider is not
required to implement or otherwise materialize an abstract schema type.

The domain of a query consists of the abstract schema types of all entities and embeddables that are
defined in the same persistence unit.

The domain of a query may be restricted by the navigability of the relationships of the entity and
associated embeddable classes on which it is based. The association fields of an entity’s or
embeddable’s abstract schema type determine navigability. Using the association fields and their
values, a query can select related entities and use their abstract schema types in the query.

4.3.1. Naming

Entities are designated in query strings by their entity names. The entity name is defined by the name
element of the Entity annotation (or the entity-name XML descriptor element), and defaults to the
unqualified name of the entity class. Entity names are scoped within the persistence unit and must be
unique within the persistence unit.

Jakarta Persistence 169

4.3. Abstract Schema Types and Query Domains

4.3.2. Example

This example assumes that the application developer provides several entity classes, representing
orders, products, and line items, and an embeddable address class representing shipping addresses
and billing addresses. The abstract schema types for the entities are Order, Product, and Lineltem
respectively. There is a one-to-many relationship between Order and Lineltem. The entity Lineltem is
related to Product in a many-to-one relationship. The classes are logically in the same persistence unit,
as shown in Figure 1.

Queries to select orders can be defined by navigating over the association fields and state fields
defined by Order and Lineltem. A query to find all orders with pending line items might be written as
follows:

SELECT DISTINCT o
FROM Order AS o JOIN o.lineItems AS 1
WHERE 1.shipped = FALSE

Figure 1. Abstract Persistence Schema of Several Entities with Defined in the Same Persistence Unit.

This query navigates over the association field lineltems of the abstract schema type Order to find line
items, and uses the state field shipped of Lineltem to select those orders that have at least one line item
that has not yet shipped. (Note that this query does not select orders that have no line items.)

Although reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FALSE appear in upper
case in this example, reserved identifiers are case insensitive.

The SELECT clause of this example designates the return type of this query to be of type Order.

Because the same persistence unit defines the abstract persistence schema of the related entities, the
developer can also specify a query over orders that utilizes the abstract schema type for products, and
hence the state fields and association fields of both the abstract schema types Order and Product. For
example, if the abstract schema type Product has a state field named productType, a query over orders
can be specified using this state field. Such a query might be to find all orders for products with
product type office supplies. A query for this might be as follows.

170 Jakarta Persistence

4.4. The FROM Clause and Navigational Declarations

SELECT DISTINCT o
FROM Order o JOIN o.lineItems 1 JOIN 1.product p
WHERE p.productType = 'office_supplies’

Because Order is related to Product by means of the relationships between Order and Lineltem and
between Lineltem and Product, navigation using the association fields lineltems and product is used to
express the query. This query is specified by using the entity name Order, which designates the
abstract schema type over which the query ranges. The basis for the navigation is provided by the
association fields lineltems and product of the abstract schema types Order and Lineltem respectively.

4.4. The FROM Clause and Navigational Declarations

The FROM clause of a query defines the domain of the query by declaring identification variables. An
identification variable is an identifier declared in the FROM clause of a query. The domain of the query
may be constrained by path expressions. (See [a4792].)

Identification variables designate instances of a particular abstract schema type. The FROM clause can
contain multiple identification variable declarations separated by a comma (,).

Jakarta Persistence 171

4.4. The FROM Clause and Navigational Declarations

from_clause ::=
FROM identification_variable_declaration
{, {identification_variable_declaration | collection_member_declaration}}*

identification_variable_declaration ::= range_variable_declaration {join | fetch_join}*
range_variable_declaration ::= entity_name [AS] identification_variable
join ::= join_spec join_association_path_expression [AS] identification_variable

[join_condition]
fetch_join ::= join_spec FETCH join_association_path_expression

join_association_path_expression ::=
join_collection_valued_path_expression |
join_single_valued_path_expression |
TREAT(join_collection_valued_path_expression AS subtype) |
TREAT(join_single_valued_path_expression AS subtype)

join_collection_valued_path_expression ::=
identification_variable.{single_valued_embeddable_object_field.}*collection_valued_field

join_single_valued_path_expression ::=
identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_fie
1d

join_spec ::= [LEFT [OUTER] | INNER] JOIN
join_condition ::= ON conditional_expression

collection_member_declaration ::= IN (collection_valued_path_expression) [AS]
identification_variable

The following subsections discuss the constructs used in the FROM clause.

4.4.1. Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with a
Java identifier start character, and all other characters must be Java identifier part characters. An
identifier start character is any character for which the method Character.isJavaldentifierStart returns
true. This includes the underscore () character and the dollar sign ($) character. An identifier part
character is any character for which the method Character.isJavaldentifierPart returns true. The
question mark (?) character is reserved for use by the Jakarta Persistence query language.

The following are reserved identifiers: ABS, ALL, AND, ANY, AS, ASC, AVG, BETWEEN, BIT LENGTH"”,
BOTH, BY, CASE, CHAR LENGTH, CHARACTER_LENGTH, CLASS, COALESCE, CONCAT, COUNT,

172 Jakarta Persistence

4.4. The FROM Clause and Navigational Declarations

CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, DELETE, DESC, DISTINCT, ELSE, EMPTY,
END, ENTRY, ESCAPE, EXISTS, FALSE, FETCH, FROM, FUNCTION, GROUP, HAVING, IN, INDEX, INNER, IS,
JOIN, KEY, LEADING, LEFT, LENGTH, LIKE, LOCATE, LOWER, MAX, MEMBER, MIN, MOD, NEW, NOT,
NULL, NULLIF, OBJECT, OF, ON, OR, ORDER, OUTER, POSITION, SELECT, SET, SIZE, SOME, SQRT,
SUBSTRING, SUM, THEN, TRAILING, TREAT, TRIM, TRUE, TYPE, UNKNOWN, UPDATE, UPPER, VALUE,
WHEN, WHERE.

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification
variables or result variables (see Section 4.8).

It is recommended that SQL key words other than those listed above not be used as
o identification variables in queries because they may be used as reserved identifiers in
future releases of this specification.

4.4.2. Identification Variables
An identification variable is a valid identifier declared in the FROM clause of a query.

All identification variables must be declared in the FROM clause. Identification variables cannot be
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any entity in the
same persistence unit.

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the
variable. For example, consider the previous query:

SELECT DISTINCT o
FROM Order o JOIN o.lineItems 1 JOIN 1.product p
WHERE p.productType = 'office_supplies'

In the FROM clause declaration o.lineltems [, the identification variable [evaluates to any Lineltem
value directly reachable from Order. The association field lineltems is a collection of instances of the
abstract schema type Lineltem and the identification variable [refers to an element of this collection.
The type of [is the abstract schema type of Lineltem.

An identification variable can range over an entity, embeddable, or basic abstract schema type. An
identification variable designates an instance of an abstract schema type or an element of a collection
of abstract schema type instances.

Note that for identification variables referring to an instance of an association or collection
represented as a java.util Map, the identification variable is of the abstract schema type of the map
value.

Jakarta Persistence 173

4.4. The FROM Clause and Navigational Declarations

An identification variable always designates a reference to a single value. It is declared in one of three
ways: in a range variable declaration, in a join clause, or in a collection member declaration. The
identification variable declarations are evaluated from left to right in the FROM clause, and an
identification variable declaration can use the result of a preceding identification variable declaration
of the query string.

All identification variables used in the SELECT, WHERE, ORDER BY, GROUP BY, or HAVING clause of a
SELECT or DELETE statement must be declared in the FROM clause. The identification variables used
in the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

Identification variables are existentially quantified in these clauses. This means that an identification
variable represents a member of a collection or an instance of an entity’s abstract schema type. An
identification variable never designates a collection in its entirety.

An identification variable is scoped to the query (or subquery) in which it is defined and is also visible
to any subqueries within that query scope that do not define an identification variable of the same
name.

4.4.3. Range Variable Declarations

The syntax for declaring an identification variable as a range variable is similar to that of SQL;
optionally, it uses the AS keyword. A range variable designates an entity abstract schema type.”

range_variable_declaration ::= entity_name [AS] identification_variable

Range variable declarations allow the developer to designate a “root” for objects which may not be
reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type, more
than one identification variable ranging over the abstract schema type is needed in the FROM clause.

The following query returns orders whose quantity is greater than the order quantity for John Smith.
This example illustrates the use of two different identification variables in the FROM clause, both of
the abstract schema type Order. The SELECT clause of this query determines that it is the orders with
quantities larger than John Smith’s that are returned.

SELECT DISTINCT o1

FROM Order o1, Order o2

WHERE o1.quantity > o2.quantity AND
02.customer.lastname = 'Smith" AND
02.customer.firstname= 'John'

174 Jakarta Persistence

4.4. The FROM Clause and Navigational Declarations

4.4.4. Path Expressions

An identification variable followed by the navigation operator (.) and a state field or association field is
a path expression. The type of the path expression is the type computed as the result of navigation; that
is, the type of the state field or association field to which the expression navigates. The type of a path
expression that navigates to an association field may be specified as a subtype of the declared type of
the association field by means of the TREAT operator. See Section 4.4.9.

An identification variable qualified by the KEY, VALUE, or ENTRY operator is a path expression. The
KEY, VALUE, and ENTRY operators may only be applied to identification variables that correspond to
map-valued associations or map-valued element collections. The type of the path expression is the type
computed as the result of the operation; that is, the abstract schema type of the field that is the value of
the KEY, VALUE, or ENTRY operator (the map key, map value, or map entry respectively).””

In the following query, photos is a map from photo label to filename.

SELECT 1i.name, VALUE(p)
FROM Item i JOIN i.photos p
WHERE KEY(p) LIKE '%egret'

In the above query the identification variable p designates an abstract schema type corresponding to
the map value. The results of VALUE(p) and KEY(p) are the map value and the map key associated with
p, respectively. The following query is equivalent:

SELECT 1i.name, p
FROM Item i JOIN i.photos p
WHERE KEY(p) LIKE '%egret'

A path expression using the KEY or VALUE operator can be further composed. A path expression using
the ENTRY operator is terminal. It cannot be further composed and can only appear in the SELECT list
of a query.

The syntax for qualified identification variables is as follows.

qualified_identification_variable ::=
map_field_identification_variable |
ENTRY(identification_variable)

map_field_identification_variable ::=
KEY(identification_variable) |
VALUE(identification_variable)

Depending on navigability, a path expression that leads to an association field or to a field whose type

Jakarta Persistence 175

4.4. The FROM Clause and Navigational Declarations

is an embeddable class may be further composed. Path expressions can be composed from other path
expressions if the original path expression evaluates to a single-valued type (not a collection).

In the following example, contactInfo denotes an embeddable class consisting of an address and set of
phones. Phone is an entity.

SELECT p.vendor
FROM Employee e JOIN e.contactInfo.phones p
WHERE e.contactInfo.address.zipcode = '95054'

Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-
terminal field in the path expression is null, the path is considered to have no value, and does not
participate in the determination of the result.

The following query is equivalent to the query above:

SELECT p.vendor
FROM Employee e JOIN e.contactInfo ¢ JOIN c.phones p
WHERE e.contactInfo.address.zipcode = '95054'

4.4.4.1. Path Expression Syntax

The syntax for single-valued path expressions and collection-valued path expressions is as follows.

An identification variable wused in a single_valued object_path_expression or in a
collection_valued_path_expression may be an unqualified identification variable or an identification
variable to which the KEY or VALUE function has been applied.

general_identification_variable ::=
identification_variable |
map_field_identification_variable

The type of an entity-valued path expression or an entity-valued subpath of a path expression used in a
WHERE clause may be specified as a subtype of the corresponding declared type by means of the
TREAT operator. See Section 4.4.9.

176 Jakarta Persistence

4.4. The FROM Clause and Navigational Declarations

general_subpath ::= simple_subpath | treated_subpath{.single_valued_object_field}*

simple_subpath ::=
general_identification_variable |
general_identification_variable{.single_valued_object_field}*

treated_subpath ::= TREAT(general_subpath AS subtype)

single_valued_path_expression ::=
qualified_identification_variable |
TREAT(qualified_identification_variable AS subtype) |
state_field_path_expression |
single_valued_object_path_expression

state_field_path_expression ::= general_subpath.state_field

state_valued_path_expression ::= state_field_path_expression |
general_identification_variable

single_valued_object_path_expression ::= general_subpath.single_valued_object_field

collection_valued_path_expression ::= general_subpath.collection_valued_field

A single_valued_object_field is designated by the name of an association field in a one-to-one or many-
to-one relationship or a field of embeddable class type. The type of a single_valued_object_field is the
abstract schema type of the related entity or embeddable class.

A state _field is designated by the name of an entity or embeddable class state field that corresponds to
a basic type.

A collection_valued field is designated by the name of an association field in a one-to-many or a many-
to-many relationship or by the name of an element collection field. The type of a collection_valued_field
is a collection of values of the abstract schema type of the related entity or element type.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a
collection. For example, if o designates Order, the path expression o.lineltems.product is illegal since
navigation to lineltems results in a collection. This case should produce an error when the query string
is verified. To handle such a navigation, an identification variable must be declared in the FROM clause
to range over the elements of the lineltems collection. Another path expression must be used to
navigate over each such element in the WHERE clause of the query, as in the following:

SELECT DISTINCT 1.product
FROM Order AS o JOIN o.lineltems 1

It is illegal to use a collection_valued_path_expression other than in the FROM clause of a query except

Jakarta Persistence 177

4.4. The FROM Clause and Navigational Declarations

in an empty_collection_comparison_expression, in a collection_member_expression, or as an argument to
the SIZE operator. See Section 4.6.12, Section 4.6.13, and Section 4.6.17.2.2.

4.4.5. Joins

An inner join may be implicitly specified by the use of a cartesian product in the FROM clause and a
join condition in the WHERE clause. In the absence of a join condition, this reduces to the cartesian
product.

The main use case for this generalized style of join is when a join condition does not involve a foreign
key relationship that is mapped to an entity relationship.

Example:
SELECT ¢ FROM Customer c, Employee e WHERE c.hatsize = e.shoesize

In general, use of this style of inner join (also referred to as theta-join) is less typical than explicitly
defined joins over relationships.

The syntax for explicit join operations is as follows:

join ::= join_spec join_association_path_expression [AS] identification_variable
[join_condition]

fetch_join ::= join_spec FETCH join_association_path_expression
join_association_path_expression ::=

join_collection_valued_path_expression |

join_single_valued_path_expression |

TREAT(join_collection_valued_path_expression _AS_ subtype) |

TREAT(join_single_valued_path_expression AS subtype)
join_collection_valued_path_expression ::=
identification_variable.{single_valued_embeddable_object_field.}*collection_valued_field

join_single_valued_path_expression ::=

identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_fie
1d

join_spec ::= [LEFT [OUTER] | INNER] JOIN

join_condition ::= ON conditional_expression

178 Jakarta Persistence

4.4. The FROM Clause and Navigational Declarations

The inner and outer join operation types described in Section 4.4.5.1, Section 4.4.5.2, and Section 4.4.5.3
are supported.

4.4.5.1. Inner Joins (Relationship Joins)

The syntax for the inner join operation is

[INNER] JOIN join_association_path_expression [AS] identification_variable
[join_condition]

For example, the query below joins over the relationship between customers and orders. This type of
join typically equates to a join over a foreign key relationship in the database.

SELECT ¢ FROM Customer c¢ JOIN c.orders o WHERE c.status = 1

The keyword INNER may optionally be used:

SELECT ¢ FROM Customer c¢ INNER JOIN c.orders o WHERE c.status = 1

This is equivalent to the following query using the earlier IN construct, defined in [4]. It selects those
customers of status 1 for which at least one order exists:

SELECT OBJECT(c) FROM Customer c, IN(c.orders) o WHERE c.status = 1

The query below joins over Employee, ContactInfo and Phone. ContactInfo is an embeddable class that
consists of an address and set of phones. Phone is an entity.

SELECT p.vendor
FROM Employee e JOIN e.contactInfo ¢ JOIN c.phones p
WHERE c.address.zipcode = '95054'

A join condition may be specified for an inner join. This is equivalent to specification of the same
condition in the WHERE clause.

4.4.5.2. Left Outer Joins

LEFT JOIN and LEFT OUTER JOIN are synonymous. They enable the retrieval of a set of entities where
matching values in the join condition may be absent.

The syntax for a left outer join is

Jakarta Persistence 179

4.4. The FROM Clause and Navigational Declarations

LEFT [OUTER] JOIN join_association_path_expression [AS] identification_variable
[join_condition]

An outer join without a specified join condition has an implicit join condition over the foreign key
relationship corresponding to the join_association_path_expression. It would typically be mapped to a
SQL outer join with an ON condition on the foreign key relationship as in the queries below:

Jakarta Persistence query language:

SELECT s.name, COUNT(p)
FROM Suppliers s LEFT JOIN s.products p
GROUP BY s.name

SQL:

SELECT s.name, COUNT(p.id)

FROM Suppliers s LEFT JOIN Products p
ON s.id = p.supplierId

GROUP By s.name

An outer join with an explicit ON condition would cause an additional specified join condition to be
added to the generated SQL:

Jakarta Persistence query language:

SELECT s.name, COUNT(p)

FROM Suppliers s LEFT JOIN s.products p
ON p.status = "inStock'

GROUP BY s.name

SQL:

SELECT s.name, COUNT(p.1id)
FROM Suppliers s LEFT JOIN Products p

ON s.id = p.supplierId AND p.status = 'inStock'
GROUP BY s.name

Note that the result of this query will be different from that of the following query:

180 Jakarta Persistence

4.4. The FROM Clause and Navigational Declarations

SELECT s.name, COUNT(p)

FROM Suppliers s LEFT JOIN s.products p
WHERE p.status = "inStock'

GROUP BY s.name

The result of the latter query will exclude suppliers who have no products in stock whereas the former
query will include them.

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side effect
of a query. This is accomplished by specifying the LEFT JOIN as a FETCH JOIN as described below.

4.4.5.3. Fetch Joins

A FETCH JOIN enables the fetching of an association or element collection as a side effect of the
execution of a query.

The syntax for a fetch join is

fetch_join ::= [LEFT [OUTER] | INNER] JOIN FETCH join_association_path_expression

The association referenced by the right side of the FETCH JOIN clause must be an association or
element collection that is referenced from an entity or embeddable that is returned as a result of the
query. It is not permitted to specify an identification variable for the objects referenced by the right
side of the FETCH JOIN clause, and hence references to the implicitly fetched entities or elements
cannot appear elsewhere in the query.

The following query returns a set of departments. As a side effect, the associated employees for those
departments are also retrieved, even though they are not part of the explicit query result. The
initialization of the persistent state or relationship fields or properties of the objects that are retrieved
as a result of a fetch join is determined by the metadata for that class—in this example, the Employee
entity class.

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

A fetch join has the same join semantics as the corresponding inner or outer join, except that the
related objects specified on the right-hand side of the join operation are not returned in the query
result or otherwise referenced in the query. Hence, for example, if department 1 has five employees,
the above query returns five references to the department 1 entity.

The FETCH JOIN construct must not be used in the FROM clause of a subquery.

Jakarta Persistence 181

4.4. The FROM Clause and Navigational Declarations

4.4.6. Collection Member Declarations

An identification variable declared by a collection_member_declaration ranges over values of a
collection obtained by navigation using a path expression.

An identification variable of a collection member declaration is declared using a special operator, the
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. The
path expression evaluates to a collection type specified as a result of navigation to a collection-valued
association field of an entity or embeddable class abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member _declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable

For example, the query

SELECT DISTINCT o
FROM Order o JOIN o.linelItems 1
WHERE 1.product.productType = 'office_supplies'

can equivalently be expressed as follows, using the IN operator:

SELECT DISTINCT o
FROM Order o, IN(o.lineltems) 1
WHERE 1.product.productType = 'office_supplies’

In this example, lineltems is the name of an association field whose value is a collection of instances of
the abstract schema type Lineltem. The identification variable [designates a member of this collection,
a single Lineltem abstract schema type instance. In this example, o is an identification variable of the
abstract schema type Order.

4.4.7. FROM Clause and SQL

The Jakarta Persistence query language treats the FROM clause similarly to SQL in that the declared
identification variables affect the results of the query even if they are not used in the WHERE clause.
Application developers should use caution in defining identification variables because the domain of
the query can depend on whether there are any values of the declared type.

For example, the FROM clause below defines a query over all orders that have line items and existing
products. If there are no Product instances in the database, the domain of the query is empty and no
order is selected.

182 Jakarta Persistence

4.4. The FROM Clause and Navigational Declarations

SELECT o
FROM Order AS o JOIN o.lineltems 1 JOIN 1.product p

4.4.8. Polymorphism

Jakarta Persistence queries are automatically polymorphic. The FROM clause of a query designates not
only instances of the specific entity class(es) to which it explicitly refers but instances of subclasses of
those classes as well. The instances returned by a query thus include instances of the subclasses that
satisfy the query criteria.

Non-polymorphic queries or queries whose polymorphism is restricted can be specified using entity
type expressions in the WHERE clause to restrict the domain of the query. See Section 4.6.17.5.

4.4.9. Downcasting

The use of the TREAT operator is supported for downcasting within path expressions in the FROM and
WHERE clauses. Use of the TREAT operator allows access to subclass-specific state.

If during query execution the first argument to the TREAT operator is not a subtype (proper or
improper) of the target type, the path is considered to have no value, and does not participate in the
determination of the result. That is, in the case of a join, the referenced object does not participate in
the result, and in the case of a restriction, the associated predicate is false. Use of the TREAT operator
therefore also has the effect of filtering on the specified type (and its subtypes) as well as performing
the downcast. If the target type is not a subtype (proper or improper) of the static type of the first
argument, the query is invalid.

Examples:

SELECT b.name, b.ISBN
FROM Order o JOIN TREAT(o.product AS Book) b

SELECT e FROM Employee e JOIN TREAT(e.projects AS LargeProject) 1p
WHERE 1p.budget > 1000

SELECT e FROM Employee e JOIN e.projects p

WHERE TREAT(p AS LargeProject).budget > 1000
OR TREAT(p AS SmallProject).name LIKE 'Persist%'
OR p.description LIKE "cost overrun"

SELECT e FROM Employee e

WHERE TREAT(e AS Exempt).vacationDays > 10
OR TREAT(e AS Contractor).hours > 100

Jakarta Persistence 183

4.5. WHERE Clause

4.5. WHERE Clause

The WHERE clause of a query consists of a conditional expression used to select objects or values that
satisfy the expression. The WHERE clause restricts the result of a select statement or the scope of an
update or delete operation.

A WHERE clause is defined as follows:
where_clause ::= WHERE conditional_expression

The GROUP BY construct enables the aggregation of values according to the properties of an entity
class. The HAVING construct enables conditions to be specified that further restrict the query result as
restrictions upon the groups.

The syntax of the HAVING clause is as follows:
having_clause ::= HAVING conditional_expression

The GROUP BY and HAVING constructs are further discussed in Section 4.7.

4.6. Conditional Expressions

The following sections describe language constructs that can be used in a conditional expression of the
WHERE clause, the HAVING clause, or in an ON condition.

State fields that are mapped in serialized form or as lobs cannot be portably used in conditional """,

4.6.1. Literals

A string literal is enclosed in single quotes—for example: 'literal'. A string literal that includes a single
quote is represented by two single quotes—for example: 'literal"s'. String literals in queries, like Java
String literals, use unicode character encoding. The use of Java escape notation is not supported in
query string literals.

Exact numeric literals support the use of Java integer literal syntax as well as SQL exact numeric literal
syntax.

Approximate literals support the use Java floating point literal syntax as well as SQL approximate
numeric literal syntax.

Appropriate suffixes can be used to indicate the specific type of a numeric literal in accordance with
the Java Language Specification. Support for the use of hexadecimal and octal numeric literals is not
required by this specification.

184 Jakarta Persistence

4.6. Conditional Expressions

Enum literals support the use of Java enum literal syntax. The fully qualified enum class name must be
specified.

The JDBC escape syntax may be used for the specification of date, time, and timestamp literals. For

example:

SELECT o
FROM Customer c¢ JOIN c.orders o
WHERE c.name = 'Smith’
AND o.submissionDate < {d '2008-12-31'}

The portability of this syntax for date, time, and timestamp literals is dependent upon the JDBC driver
in use. Persistence providers are not required to translate from this syntax into the native syntax of the
database or driver.

The boolean literals are TRUE and FALSE.
Entity type literals are specified by entity names—for example: Customer.

Although reserved literals appear in upper case, they are case insensitive.

4.6.2. Identification Variables

All identification variables used in the WHERE or HAVING clause of a SELECT or DELETE statement
must be declared in the FROM clause, as described in Section 4.4.2. The identification variables used in
the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

Identification variables are existentially quantified in the WHERE and HAVING clause. This means that
an identification variable represents a member of a collection or an instance of an entity’s abstract
schema type. An identification variable never designates a collection in its entirety.

4.6.3. Path Expressions

It is illegal to use a collection_valued_path_expression within a WHERE or HAVING clause as part of a
conditional expression except in an empty_collection_comparison_expression, in a
collection_member_expression, or as an argument to the SIZE operator.

4.6.4. Input Parameters

Either positional or named parameters may be used. Positional and named parameters must not be
mixed in a single query.

Input parameters can only be used in the WHERE clause or HAVING clause of a query or as the new
value for an update item in the SET clause of an update statement.

Jakarta Persistence 185

4.6. Conditional Expressions

Note that if an input parameter value is null, comparison operations or arithmetic
o operations involving the input parameter will return an unknown value. See Section
4.11.

All input parameters must be single-valued, except in IN expressions (see Section 4.6.9), which support
the use of collection-valued input parameters.

The API for the binding of query parameters is described in Chapter 3.

4.6.4.1. Positional Parameters

The following rules apply to positional parameters.

* Input parameters are designated by the question mark (?) prefix followed by an integer. For
example: ?1.

* Input parameters are numbered starting from 1.
* The same parameter can be used more than once in the query string.

* The ordering of the use of parameters within the query string need not conform to the order of the
positional parameters.

4.6.4.2. Named Parameters

A named parameter is denoted by an identifier that is prefixed by the ":" symbol. It follows the rules
for identifiers defined in Section 4.4.1. Named parameters are case sensitive.

Example:

SELECT ¢
FROM Customer c
WHERE c.status = :stat

The same named parameter can be used more than once in the query string.

4.6.5. Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical
operations, path expressions that evaluate to boolean values, boolean literals, and boolean input
parameters.

The scalar expressions described in Section 4.6.17 can be used in conditional expressions.
Aggregate functions can only be used in conditional expressions in a HAVING clause. See Section 4.7.

Standard bracketing () for ordering expression evaluation is supported.

186 Jakarta Persistence

4.6. Conditional Expressions

Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)

simple_cond_expression ::=
comparison_expression |
between_expression |
in_expression |
like_expression |
null_comparison_expression |
empty_collection_comparison_expression
collection_member_expression |
exists_expression

4.6.6. Operators and Operator Precedence
The operators are listed below in order of decreasing precedence.

» Navigation operator (.)

* Arithmetic operators:
o +,-unary
o * [multiplication and division
o +, - addition and subtraction

* Comparison operators: =, >, >=, <, <, <> (not equal), [NOT] BETWEEN, [NOT] LIKE, [NOT] IN, IS
[NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF], [NOT] EXISTS

* Logical operators:
o NOT
o AND
> OR

The following sections describe operators used in specific expressions.

4.6.7. Comparison Expressions

The syntax for the use of comparison expressions in a conditional expression is as follows'":

Jakarta Persistence 187

4.6. Conditional Expressions

comparison_expression ::=

string_expression comparison_operator {string_expression | all_or_any_expression} |
boolean_expression {= | <>} {boolean_expression | all_or_any_expression} |
enum_expression {= | <>} {enum_expression | all_or_any_expression} |
datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |
entity_expression {= | <>} {entity_expression | all_or_any_expression} |
arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any_expression} |
entity_type_expression {= | <>} entity_type_expression}

comparison_operator ::= = | > | >= | < | <= | <
Examples:

item.cost * 1.08 <= 100.00
CONCAT(person.lastName, ', ', person.firstName)) = 'Jones, Sam'
TYPE(e) = ExemptEmployee

4.6.8. Between Expressions

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression is as
follows:

between_expression ::=
arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression

The BETWEEN expression
x BETWEEN y AND z

is semantically equivalent to:
y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Section 4.11.

Examples:

188 Jakarta Persistence

4.6. Conditional Expressions

p.age BETWEEN 15 and 19 is equivalent to p.age >= 15 AND p.age <= 19
p.age NOT BETWEEN 15 and 19 is equivalent to p.age < 15 OR p.age > 19

In the following example, transactionHistory is a list of credit card transactions defined using an order
column.

SELECT t
FROM CreditCard c JOIN c.transactionHistory t
WHERE c.holder.name = 'John Doe' AND INDEX(t) BETWEEN © AND 9

4.6.9. In Expressions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follows:

in_expression ::=
{state_valued_path_expression | type_discriminator} [NOT] IN
{(in_item {, in_item}*) | (subquery) | collection_valued_input_parameter}
in_item ::= literal | single_valued_input_parameter

The state_valued_path_expression must have a string, numeric, date, time, timestamp, or enum value.

The literal and/or input parameter values must be like the same abstract schema type of the
state_valued_path_expression in type. (See Section 4.12).

The results of the subquery must be like the same abstract schema type of the
state_valued_path_expression in type. Subqueries are discussed in Section 4.6.16.

Example 1:
o.country IN ('UK', 'US", 'France')
is true for UK and false for Peru, and is equivalent to the expression
(o.country = "UK") OR (o.country = 'US") OR (o.country = 'France')
Example 2:
o.country NOT IN ('UK', 'US", 'France")

is false for UK and true for Peru, and is equivalent to the expression

Jakarta Persistence 189

4.6. Conditional Expressions

NOT ((o.country = "UK') OR (o.country = "US') OR (o.country = 'France'))

There must be at least one element in the comma separated list that defines the set of values for the IN
expression.

If the value of a state_valued_path_expression or in_item in an IN or NOT IN expression is NULL or
unknown, the value of the expression is unknown.

Note that use of a collection-valued input parameter will mean that a static query cannot be
precompiled.

4.6.10. Like Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as follows:

like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

The string_expression must have a string value. The pattern_value is a string literal or a string-valued
input parameter in which an underscore () stands for any single character, a percent (%) character
stands for any sequence of characters (including the empty sequence), and all other characters stand for
themselves. The optional _escape_character 1is a single-character string literal or a character-valued
input parameter (i.e., char or Character) and is used to escape the special meaning of the underscore
and percent characters in pattern_value _""

Examples:

* address.phone LIKE '12%3' is true for '123','12993" and false for '1234'
e asentence.word LIKE 'l se'is true for 'lose' and false for 'loose’
» aword.underscored LIKE '\%' ESCAPE '\'_is true for ' foo' and false for 'bar’

* address.phone NOT LIKE '12%3' is false for '123' and '12993' and true for '1234'

If the value of the string expression or pattern_value is NULL or unknown, the value of the LIKE
expression is unknown. If the escape_character is specified and is NULL, the value of the LIKE
expression is unknown.

4.6.11. Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:

null_comparison_expression ::=
{single_valued_path_expression | input_parameter} IS [NOT] NULL

190 Jakarta Persistence

4.6. Conditional Expressions

A null comparison expression tests whether or not the single-valued path expression or input
parameter is a NULL value.

Null comparisons over instances of embeddable class types are not supported. Support for
comparisons over embeddables may be added in a future release of this specification.

4.6.12. Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in an
empty_collection_comparison_expression is as follows:

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression
is empty (i.e, has no elements).

Example:

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is
unknown, the value of the empty comparison expression is unknown.

4.6.13. Collection Member Expressions

The syntax for the use of the comparison operator MEMBER OF"*” in an collection_member_expression
is as follows:

collection_member_expression ::=

entity_or_value_expression [NOT] MEMBER [OF] collection_valued_path_expression
entity_or_value_expression ::=

single_valued_object_path_expression |

state_valued_path_expression |

simple_entity_or_value_expression
simple_entity_or_value_expression ::=

identification_variable |

input_parameter |

literal

This expression tests whether the designated value is a member of the collection specified by the

Jakarta Persistence 191

4.6. Conditional Expressions

collection-valued path expression.

Expressions that evaluate to embeddable types are not supported in collection member expressions.
Support for use of embeddables in collection member expressions may be added in a future release of
this specification.

If the collection valued path expression designates an empty collection, the value of the MEMBER OF
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the value
of the collection_valued_path_expression or entity_or_value_expression in the collection member
expression is NULL or unknown, the value of the collection member expression is unknown.

Example:
SELECT p

FROM Person p
WHERE 'Joe' MEMBER OF p.nicknames

4.6.14. Exists Expressions

An EXISTS expression is a predicate that is true only if the result of the subquery consists of one or
more values and that is false otherwise.

The syntax of an exists expression is
exists_expression ::= [NOT] EXISTS (subquery)
Example:

SELECT DISTINCT emp
FROM Employee emp
WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

The result of this query consists of all employees whose spouses are also employees.

4.6.15. All or Any Expressions

An ALL conditional expression is a predicate over a subquery that is true if the comparison operation
is true for all values in the result of the subquery or the result of the subquery is empty. An ALL
conditional expression is false if the result of the comparison is false for at least one value of the result
of the subquery, and is unknown if neither true nor false.

192 Jakarta Persistence

4.6. Conditional Expressions

An ANY conditional expression is a predicate over a subquery that is true if the comparison operation
is true for some value in the result of the subquery. An ANY conditional expression is false if the result
of the subquery is empty or if the comparison operation is false for every value in the result of the
subquery, and is unknown if neither true nor false. The keyword SOME is synonymous with ANY.

The comparison operators used with ALL or ANY conditional expressions are =, <, <, >, >=, <> The

result of the subquery must be like that of the other argument to the comparison operator in type. See
Section 4.12.

The syntax of an ALL or ANY expression is specified as follows:
all_or_any_expression ::= {ALL | ANY | SOME} (subquery)
Example:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (
SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

The result of this query consists of all employees whose salaries exceed the salaries of all managers in
their department.

4.6.16. Subqueries
Subqueries may be used in the WHERE or HAVING clause."”

The syntax for subqueries is as follows:

Jakarta Persistence 193

4.6. Conditional Expressions

subquery ::= simple_select_clause subquery_from_clause [where_clause]
[groupby_clause] [having_clause]
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
subquery_from_clause ::=
FROM subselect _identification_variable_declaration
{, subselect_identification_variable_declaration |
collection_member _declaration}*
subselect_identification_variable_declaration ::=
identification_variable_declaration |
derived_path_expression [AS] identification_variable {join}* |
derived_collection_member _declaration
simple_select_expression ::=
single_valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
derived_path_expression ::=
general_derived_path.single_valued_object_field |
general_derived_path.collection_valued_field
general_derived_path ::=
simple_derived_path |
treated_derived_path{.single_valued_object_field}*
simple_derived_path ::= superquery_identification_variable{.single_valued_object_field}*
treated_derived_path ::= TREAT(general_derived_path AS subtype)
derived_collection_member_declaration ::=
IN
superquery_identification_variable.{single_valued_object_field.}*collection_valued_field

Examples:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

Note that some contexts in which a subquery can be used require that the subquery be a scalar
subquery (i.e., produce a single result). This is illustrated in the following examples using numeric
comparisons.

194 Jakarta Persistence

4.6. Conditional Expressions

SELECT ¢
FROM Customer c
WHERE (SELECT AVG(o.price) FROM c.orders o) > 100

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (
SELECT AVG(c.balanceOwed)/2.0 FROM Customer c)

4.6.17. Scalar Expressions
Numeric, string, datetime, case, and entity type expressions result in scalar values.

Scalar expressions may be used in the SELECT clause of a query as well as in the WHERE"” and
HAVING clauses.

scalar_expression::=
arithmetic_expression |
string_expression |
enum_expression |
datetime_expression |
boolean_expression |
case_expression |
entity_type_expression

4.6.17.1. Arithmetic Expressions
The arithmetic operators are:
* + -unary

* * / multiplication and division

e + -addition and subtraction
Arithmetic operations use numeric promotion.

Arithmetic functions are described in Section 4.6.17.2.2.

4.6.17.2. Built-in String, Arithmetic, and Datetime Functional Expressions

The Jakarta Persistence query language includes the built-in functions described in Section 4.6.17.2.1,
Section 4.6.17.2.2, Section 4.6.17.2.3, which may be used in the SELECT, WHERE or HAVING clause of a
query. The invocation of predefined database functions and user-defined database functions is
described in Section 4.6.17.3.

Jakarta Persistence 195

4.6. Conditional Expressions

If the value of any argument to a functional expression is null or unknown, the value of the functional
expression is unknown.

String Functions

functions_returning_strings ::=
CONCAT(string_expression, string_expression {, string_expression}*) |
SUBSTRING(string_expression,

arithmetic_expression [, arithmetic_expression]) |

TRIM([[trim_specification] [trim_character] FROM] string_expression) |
LOWER(string_expression) |
UPPER(string_expression)

trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics ::=
LENGTH(string_expression) |
LOCATE(string_expression, string_expression[, arithmetic_expression])

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and length of
the substring to be returned. These arguments are integers. The third argument is optional. If it is not
specified, the substring from the start position to the end of the string is returned. The first position of
a string is denoted by 1. The SUBSTRING function returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is not
specified, it will be assumed to be space (or blank). The optional trim_character _ is a single-character
string literal or a character-valued input parameter (i.e., _char or Character)**". If a trim specification is
not provided, it defaults to BOTH. The TRIM function returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively, with regard to
the locale of the database. They return a string.

The LOCATE function returns the position of a given string within a string, starting the search at a
specified position. It returns the first position at which the string was found as an integer. The first
argument is the string to be located; the second argument is the string to be searched; the optional
third argument is an integer that represents the string position at which the search is started (by
default, the beginning of the string to be searched). The first position in a string is denoted by 1. If the
string is not found, 0 is returned."”

The LENGTH function returns the length of the string in characters as an integer.

Arithmetic Functions

196 Jakarta Persistence

4.6. Conditional Expressions

functions_returning_numerics ::=
ABS(arithmetic_expression) |
SQRT(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression) |
SIZE(collection_valued_path_expression) |
INDEX(identification_variable)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the
same type as the argument to the function.
The SQRT function takes a numeric argument and returns a double.

The MOD function takes two integer arguments and returns an integer.

Numeric arguments to these functions may correspond to the numeric Java object types as well as the
primitive numeric types.

The SIZE function returns an integer value, the number of elements of the collection. If the collection is
empty, the SIZE function evaluates to zero.

The INDEX function returns an integer value corresponding to the position of its argument in an
ordered list. The INDEX function can only be applied to identification variables denoting types for
which an order column has been specified.

In the following example, studentWaitlist is a list of students for which an order column has been

specified:

SELECT w.name

FROM Course ¢ JOIN c.studentWaitlist w
WHERE c.name = 'Calculus'

AND INDEX(w) = 0

Datetime Functions

functions_returning_datetime :=
CURRENT_DATE |
CURRENT_TIME |
CURRENT_TIMESTAMP

The datetime functions return the value of current date, time, and timestamp on the database server.

4.6.17.3. Invocation of Predefined and User-defined Database Functions

The invocation of functions other than the built-in functions of the Jakarta Persistence query language

Jakarta Persistence 197

4.6. Conditional Expressions

is supported by means of the function_invocation syntax. This includes the invocation of predefined
database functions and user-defined database functions.

function_invocation ::= FUNCTION(function_name {, function_arg}*)

function_arg ::=
literal |
state_valued_path_expression
input_parameter |
scalar_expression

The function_name argument is a string that denotes the database function that is to be invoked. The
arguments must be suitable for the database function that is to be invoked. The result of the function
must be suitable for the invocation context.

The function may be a database-defined function or a user-defined function. The function may be a
scalar function or an aggregate function.

Applications that use the function_invocation syntax will not be portable across databases.

Example:

SELECT ¢
FROM Customer c
WHERE FUNCTION('hasGoodCredit', c.balance, c.creditlLimit)

4.6.17.4. Case Expressions

The following forms of case expressions are supported: general case expressions, simple case
expressions, coalesce expressions, and nullif expressions.

198 Jakarta Persistence

4.6. Conditional Expressions

case_expression ::=
general_case_expression |
simple_case_expression |
coalesce_expression |
nullif_expression

general_case_expression ::=
CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause ::= WHEN conditional_expression THEN scalar_expression

simple_case_expression ::=
CASE case_operand simple_when_clause {simple_when_clause}*
ELSE scalar_expression

END
case_operand ::= state_valued_path_expression | type_discriminator
simple_when_clause ::= WHEN scalar_expression THEN scalar_expression
coalesce_expression ::= COALESCE(scalar_expression {, scalar_expression}+)
nullif_expression ::= NULLIF(scalar_expression, scalar_expression)
Examples:

Jakarta Persistence 199

4.6. Conditional Expressions

UPDATE Employee e
SET e.salary =
CASE WHEN e.rating = 1 THEN e.salary * 1.1
WHEN e.rating = 2 THEN e.salary * 1.05
ELSE e.salary * 1.01
END

UPDATE Employee e
SET e.salary =
CASE e.rating WHEN 1 THEN e.salary * 1.1
WHEN 2 THEN e.salary * 1.05
ELSE e.salary * 1.01
END

SELECT e.name,
CASE TYPE(e) WHEN Exempt THEN 'Exempt'
WHEN Contractor THEN 'Contractor'
WHEN Intern THEN 'Intern’
ELSE 'NonExempt'
END
FROM Employee e
WHERE e.dept.name = 'Engineering'

SELECT e.name,
f.name,
CONCAT(CASE WHEN f.annualMiles > 50000 THEN 'Platinum '
WHEN f.annualMiles > 25000 THEN 'Gold '
ELSE "'
END,
"Frequent Flyer')
FROM Employee e JOIN e.frequentFlierPlan f

4.6.17.5. Entity Type Expressions

An entity type expression can be used to restrict query polymorphism. The TYPE operator returns the
exact type of the argument.

The syntax of an entity type expression is as follows:

200 Jakarta Persistence

4.7. GROUP BY, HAVING

entity_type_expression ::=
type_discriminator |
entity_type_literal |
input_parameter
type_discriminator ::=
TYPE(general_identification_variable |
single_valued_object_path_expression |
input_parameter)

An entity_type_literal is designated by the entity name.
The Java class of the entity is used as an input parameter to specify the entity type.

Examples:

SELECT e
FROM Employee e
WHERE TYPE(e) IN (Exempt, Contractor)

SELECT e
FROM Employee e
WHERE TYPE(e) IN (:empTypel, :empType2)

SELECT e
FROM Employee e
WHERE TYPE(e) IN :empTypes

SELECT TYPE(e)

FROM Employee e
WHERE TYPE(e) <> Exempt

4.7. GROUP BY, HAVING

The GROUP BY construct enables the aggregation of result values according to a set of properties. The
HAVING construct enables conditions to be specified that further restrict the query result. Such
conditions are restrictions upon the groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

Jakarta Persistence 201

4.7. GROUP BY, HAVING

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying the
where clause, and then forming the groups and filtering them according to the HAVING clause. The
HAVING clause causes those groups to be retained that satisfy the condition of the HAVING clause.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely, any item
that appears in the SELECT clause (other than as an aggregate function or as an argument to an
aggregate function) must also appear in the GROUP BY clause. In forming the groups, null values are
treated as the same for grouping purposes.

Grouping by an entity is permitted. In this case, the entity must contain no serialized state fields or lob-
valued state fields that are eagerly fetched. Grouping by an entity that contains serialized state fields or
lob-valued state fields is not portable, since the implementation is permitted to eagerly fetch fields or
properties that have been specified as LAZY.

Grouping by embeddables is not supported.

The HAVING clause is used to filter over the groups, and can contain aggregate functions over
attributes included in the groups and/or functions or other query language operators over the
attributes that are used for grouping. It is not required that an aggregate function used in the HAVING
clause also be used in the SELECT clause.

If there is no GROUP BY clause and the HAVING clause is used, the result is treated as a single group,
and the select list can only consist of aggregate functions. The use of HAVING in the absence of GROUP
BY is not required to be supported by an implementation of this specification. Portable applications
should not rely on HAVING without the use of GROUP BY.

Examples:

SELECT c.status, AVG(c.filledOrderCount), COUNT(c)
FROM Customer c

GROUP BY c.status

HAVING c.status IN (1, 2)

SELECT c.country, COUNT(c)
FROM Customer c

GROUP BY c.country

HAVING COUNT(c) > 30

SELECT ¢, COUNT(o)

FROM Customer c¢ JOIN c.orders o
GROUP BY c

HAVING COUNT(o) >= 5

202 Jakarta Persistence

4.8. SELECT Clause

4.8. SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SELECT
clause of a query.

The SELECT clause can contain one or more of the following elements: an identification variable that
ranges over an abstract schema type, a single-valued path expression, a scalar expression, an
aggregate expression, a constructor expression.

The SELECT clause has the following syntax:

select _clause ::= SELECT [DISTINCT] select_item {, select item}*
select_item ::= select_expression [[AS] result_variable]
select_expression ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable |

OBJECT(identification_variable) |

constructor_expression
constructor_expression ::=

NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable
aggregate_expression ::=

{AVG | MAX | MIN | SUM} ([DISTINCT] state_valued_path_expression) |

COUNT ([DISTINCT] identification_variable | state_valued_path_expression

single_valued_object_path_expression) |
function_invocation

For example:

SELECT c.id, c.status
FROM Customer ¢ JOIN c.orders o
WHERE o.count > 100

In the following example, videoInventory is a Map from the entity Movie to the number of copies in
stock:

Jakarta Persistence 203

4.8. SELECT Clause

SELECT v.location.street, KEY(i).title, VALUE(i)
FROM VideoStore v JOIN v.videoInventory 1
WHERE v.location.zipcode = '94301"' AND VALUE(i) > 0

Note that the SELECT clause must be specified to return only single-valued expressions. The query
below is therefore not valid:

SELECT o.lineItems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query
result.

If DISTINCT is not specified, duplicate values are not eliminated.
The result of DISTINCT over embeddable objects or map entry results is undefined.

Standalone identification variables in the SELECT clause may optionally be qualified by the OBJECT
operator.” The SELECT clause must not use the OBJECT operator to qualify path expressions.

A result_variable may be used to name a select_item in the query result.””

Example:

SELECT ¢, COUNT(1) AS itemCount

FROM Customer ¢ JOIN c.Orders o JOIN o.lineltems 1
WHERE c.address.state = 'CA'

GROUP BY c

ORDER BY itemCount

4.8.1. Result Type of the SELECT Clause

The type of the query result specified by the SELECT clause of a query is an entity abstract schema
type, a state field type, the result of a scalar expression, the result of an aggregate function, the result
of a construction operation, or some sequence of these.

The result type of the SELECT clause is defined by the the result types of the select expressions
contained in it. When multiple select expressions are used in the SELECT clause, the elements in this
result correspond in order to the order of their specification in the SELECT clause and in type to the
result types of each of the select expressions.

The type of the result of a select_expression is as follows:

» The result type of an identification_variable is the type of the entity object or embeddable object to
which the identification variable corresponds. The type of an identification_variable that refers to

204 Jakarta Persistence

4.8. SELECT Clause

an entity abstract schema type is the type of the entity to which that identification variable
corresponds or a subtype as determined by the object/relational mapping.

» The result type of a single_valued_path_expression that is a state_field_path_expression is the same
type as the corresponding state field of the entity or embeddable class. If the state field of the entity
is a primitive type, the result type is the corresponding object type.

* The result type of a single_valued_path_expression that is a single_valued_object_path_expression
is the type of the entity object or embeddable object to which the path expression corresponds. A
single_valued_object_path_expression that results in an entity object will result in an entity of the
type of the relationship field or the subtype of the relationship field of the entity object as
determined by the object/relational mapping.

* The result type of a single_valued_path_expression that is an identification_variable to which the
KEY or VALUE function has been applied is determined by the type of the map key or value
respectively, as defined by the above rules.

* The result type of a single_valued_path_expression that is an identification_variable to which the
ENTRY function has been applied is java.util Map.Entry, where the key and value types of the map
entry are determined by the above rules as applied to the map key and map value respectively.

* The result type of a scalar_expression is the type of the scalar value to which the expression
evaluates. The result type of a numeric scalar_expression is defined in Section 4.8.6.

* The result type of an entity_type_expression scalar expression is the Java class to which the
resulting abstract schema type corresponds.

» The result type of aggregate_expression is defined in Section 4.8.5.

* The result type of a constructor_expression is the type of the class for which the constructor is
defined. The types of the arguments to the constructor are defined by the above rules.

4.8.2. Constructor Expressions in the SELECT Clause

A constructor may be used in the SELECT list to return an instance of a Java class. The specified class is
not required to be an entity or to be mapped to the database. The constructor name must be fully
qualified.

If an entity class name is specified as the constructor name in the SELECT NEW clause, the resulting
entity instances will be in either the new or the detached state, depending on whether a primary key is
retrieved for the constructed object.

If a single_valued path_expression or identification_variable that is an argument to the constructor
references an entity, the resulting entity instance referenced by that single_valued_path_expression or
identification_variable will be in the managed state.

For example,

Jakarta Persistence 205

4.8. SELECT Clause

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.count)
FROM Customer c¢ JOIN c.orders o
WHERE o.count > 100

4.8.3. Null Values in the Query Result

If the result of a query corresponds to an association field or state field whose value is null, that null
value is returned in the result of the query method. The IS NOT NULL construct can be used to
eliminate such null values from the result set of the query.

Note, however, that state field types defined in terms of Java numeric primitive types cannot produce
NULL values in the query result. A query that returns such a state field type as a result type must not
return a null value.

4.8.4. Embeddables in the Query Result

If the result of a query corresponds to an identification variable or state field whose value is an
embeddable, the embeddable instance returned by the query will not be in the managed state (i.e., it
will not be part of the state of any managed entity).

In the following example, the Address instances returned by the query will reference Phone instances.
While the Phone instances will be managed, the Address instances referenced by the addr result
variable will not be. Modifications to these embeddable instances will have no effect on persistent
state.

206 Jakarta Persistence

4.8. SELECT Clause

public class Employee {
int 1id;
Address address;

/] ...

public class Address {
String street;

/] ...

Phone phone; // fetch=EAGER

public class Phone {
int id;
/] ...

(mappedBy="address.phone")
Employee emp; // fetch=EAGER

SELECT e.address AS addr
FROM Employee e

4.8.5. Aggregate Functions in the SELECT Clause
The result of a query may be the result of an aggregate function applied to a path expression.

The following aggregate functions can be used in the SELECT clause of a query: AVG, COUNT, MAX,
MIN, SUM, aggregate functions defined in the database.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate
function must terminate in a state field. The path expression argument to COUNT may terminate in
either a state field or a association field, or the argument to COUNT may be an identification variable.

Jakarta Persistence 207

4.8. SELECT Clause

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and MIN
must correspond to orderable state field types (i.e., numeric types, string types, character types, or date
types).

The Java type that is contained in the result of a query using an aggregate function is as follows:

COUNT returns Long.

MAX, MIN return the type of the state field to which they are applied.
* AVG returns Double.

SUM returns Long when applied to state fields of integral types (other than BigInteger); Double
when applied to state fields of floating point types; BigIinteger when applied to state fields of type
BigInteger; and BigDecimal when applied to state fields of type BigDecimal.

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword
DISTINCT is specified.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can be
applied, the result of the aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the aggregate
function is 0.

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that
duplicate values are to be eliminated before the aggregate function is applied.””

The use of DISTINCT with COUNT is not supported for arguments of embeddable types or map entry
types.

The invocation of aggregate database functions, including user defined functions, is supported by
means of the FUNCTION operator. See Section 4.6.17.3.

4.8.5.1. Examples

The following query returns the average order quantity:
SELECT AVG(o.quantity) FROM Order o
The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(1.price)
FROM Order o JOIN o.lineltems 1 JOIN o.customer c
WHERE c.lastname = 'Smith' AND c.firstname = 'John'

The following query returns the total number of orders.

208 Jakarta Persistence

4.8. SELECT Clause

SELECT COUNT(o) FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been
specified.

SELECT COUNT(1.price)
FROM Order o JOIN o.lineItems 1 JOIN o.customer c
WHERE c.lastname = 'Smith' AND c.firstname = 'John'

Note that this is equivalent to:

SELECT COUNT(1)
FROM Order o JOIN o.lineItems 1 JOIN o.customer c
WHERE c.lastname = 'Smith' AND c.firstname = 'John' AND 1l.price IS NOT NULL

4.8.6. Numeric Expressions in the SELECT Clause
The type of a numeric expression in the query result is determined as follows:
* An operand that corresponds to a persistent state field is of the same type as that persistent state
field.

* An operand that corresponds to one of arithmetic functions described in Section 4.6.17.2.2 is of the
type defined by Section 4.6.17.2.2.

* An operand that corresponds to one of an aggregate functions described in Section 4.8.5 is of the

type defined by Section 4.8.5.

The result of a case expression, coalesce expression, nullif expression, or arithmetic expression (+, -, %

/) is determined by applying the following rule to its operands’”.

* If there is an operand of type Double or double, the result of the operation is of type Double;
» otherwise, if there is an operand of type Float or float, the result of the operation is of type Float;

» otherwise, if there is an operand of type BigDecimal, the result of the operation is of type
BigDecimal;

» otherwise, if there is an operand of type BigInteger, the result of the operation is of type BigInteger,
unless the operator is / (division), in which case the numeric result type is not further defined;

» otherwise, if there is an operand of type Long or long, the result of the operation is of type Long,
unless the operator is / (division), in which case the numeric result type is not further defined;

» otherwise, if there is an operand of integral type, the result of the operation is of type Integer,
unless the operator is / (division), in which case the numeric result type is not further defined.

Jakarta Persistence 209

4.9. ORDER BY Clause

Users should note that the semantics of the SQL division operation are not standard

o across databases. In particular, when both operands are of integral types, the result of
the division operation will be an integral type in some databases, and an non-integral
type in others. Portable applications should not assume a particular result type.

4.9. ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered.

The syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::=
{state_field_path_expression | general_identification_variable | result_variable}
[ASC | DESC]

An orderby_item must be one of the following:
1. A state_field_path_expression that evaluates to an orderable state field of an entity or embeddable
class abstract schema type designated in the SELECT clause by one of the following:
o a general_identification_variable
o a single_valued_object_path_expression

2. A state_field _path_expression that evaluates to the same state field of the same entity or
embeddable abstract schema type as a state_field _path_expression in the SELECT clause

3. A general_identification_variable that evaluates to the same map field of the same entity or
embeddable abstract schema type as a general_identification_variable in the SELECT clause

4, A result variable that refers to an orderable item in the SELECT clause for which the same
result_variable has been specified. This may be the result of an aggregate expression , a
scalar_expression, or a state_field_path_expression in the SELECT clause.

For example, the four queries below are legal.

210 Jakarta Persistence

4.9. ORDER BY Clause

SELECT o

FROM Customer ¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA'

ORDER BY o.quantity DESC, o.totalcost

SELECT o.quantity, a.zipcode

FROM Customer c¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA'

ORDER BY o.quantity, a.zipcode

SELECT o.quantity, o.cost*1.08 AS taxedCost, a.zipcode
FROM Customer ¢ JOIN c.orders o JOIN c.address a

WHERE a.state = 'CA' AND a.county = 'Santa (lara'
ORDER BY o.quantity, taxedCost, a.zipcode

SELECT AVG(o.quantity) as q, a.zipcode

FROM Customer c¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA'

GROUP BY a.zipcode

ORDER BY q DESC

The following two queries are not legal because the orderby_item is not reflected in the SELECT clause
of the query.

SELECT p.product_name

FROM Order o JOIN o.lineItems 1 JOIN 1.product p JOIN o.customer c
WHERE c.lastname = 'Smith' AND c.firstname = 'John'

ORDER BY p.price

SELECT p.product_name

FROM Order o, IN(o.lineItems) 1 JOIN o.customer c
WHERE c.lastname = 'Smith"' AND c.firstname = 'John'
ORDER BY o.quantity

If more than one orderby_item is specified, the left-to-right sequence of the orderby_item elements
determines the precedence, whereby the leftmost orderby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used for the associated orderby_item; the
keyword DESC specifies that descending ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non-null
values in the ordering or all null values must appear after all non-null values in the ordering, but it is
not specified which.

The ordering of the query result is preserved in the result of the query execution method if the ORDER

Jakarta Persistence 211

4.10. Bulk Update and Delete Operations

BY clause is used.

4.10. Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subclasses,
if any). Only one entity abstract schema type may be specified in the FROM or UPDATE clause.

The syntax of these operations is as follows:

update_statement ::= update_clause [where_clause]
update_clause ::= UPDATE entity_name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{single_valued_embeddable_object_field.}*
{state_field | single_valued_object_field} = new_value
new_value ::=
scalar_expression |
simple_entity_expression |
NULL

delete_statement ::= delete_clause [where_clause]
delete_clause ::= DELETE FROM entity_name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.

A delete operation only applies to entities of the specified class and its subclasses. It does not cascade to
related entities.

The new_value specified for an update operation must be compatible in type with the field to which it
is assigned.

Bulk update maps directly to a database update operation, bypassing optimistic locking checks.
Portable applications must manually update the value of the version column, if desired, and/or
manually validate the value of the version column.

The persistence context is not synchronized with the result of the bulk update or delete.

Caution should be used when executing bulk update or delete operations because they
may result in inconsistencies between the database and the entities in the active

o persistence context. In general, bulk update and delete operations should only be
performed within a transaction in a new persistence context or before fetching or
accessing entities whose state might be affected by such operations._

Examples:

212 Jakarta Persistence

4.11. Null Values

DELETE
FROM Customer c
WHERE c.status = 'inactive'

DELETE

FROM Customer c

WHERE c.status = 'inactive
AND c.orders IS EMPTY

UPDATE Customer c
SET c.status = 'outstanding’
WHERE c.balance < 10000

UPDATE Employee e

SET e.address.building = 22

WHERE e.address.building = 14
AND e.address.city = 'Santa Clara’
AND e.project = 'Jakarta EE'

4.11. Null Values

When the target of a reference does not exist in the database, its value is regarded as NULL. SQL NULL
semantics [2] defines the evaluation of conditional expressions containing NULL values.

The following is a brief description of these semantics:

* Comparison or arithmetic operations with a NULL value always yield an unknown value.

Two NULL values are not considered to be equal, the comparison yields an unknown value.

* Comparison or arithmetic operations with an unknown value always yield an unknown value.

The IS NULL and IS NOT NULL operators convert a NULL state field or single-valued object field
value into the respective TRUE or FALSE value.

* Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.

Table 1. Definition of the AND Operator

AND F U
T T F U

F F F
U U F U

Table 2. Definition of the OR Operator

Jakarta Persistence 213

4.12. Equality and Comparison Semantics

OR T F U

T T T T
T F U

U T U U

Table 3. Definition of the NOT Operator

NOT

T F

U U

The Jakarta Persistence query language defines the empty string, ", as a string with 0
length, which is not equal to a NULL value. However, NULL values and empty strings

o may not always be distinguished when queries are mapped to some databases.
Application developers should therefore not rely on the semantics of query
comparisons involving the empty string and NULL value.

4.12. Equality and Comparison Semantics

Only the values of like types are permitted to be compared. A type is like another type if they
correspond to the same Java language type, or if one is a primitive Java language type and the other is
the wrapped Java class type equivalent (e.g., int and Integer are like types in this sense). There is one
exception to this rule: it is valid to compare numeric values for which the rules of numeric promotion
apply. Conditional expressions attempting to compare non-like type values are disallowed except for
this numeric case.

Note that the arithmetic operators and comparison operators are permitted to be
applied to state fields and input parameters of the wrapped Java class equivalents to
the primitive numeric Java types.

Two entities of the same abstract schema type are equal if and only if they have the same primary key
value.

Only equality/inequality comparisons over enums are required to be supported.

Comparisons over instances of embeddable class or map entry types are not supported.

4.13. Examples

The following examples illustrate the syntax and semantics of the Jakarta Persistence query language.
These examples are based on the example presented in Section 4.3.2.

214 Jakarta Persistence

4.13. Examples

4.13.1. Simple Queries

Find all orders:

SELECT o
FROM Order o

Find all orders that need to be shipped to California:

SELECT o
FROM Order o
WHERE o.shippingAddress.state = 'CA'

Find all states for which there are orders:

SELECT DISTINCT o.shippingAddress.state
FROM Order o

4.13.2. Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1

Note that the result of this query does not include orders with no associated line items. This query can
also be written as:

SELECT o
FROM Order o
WHERE o.lineItems IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY

Find all pending orders:

Jakarta Persistence 215

4.14. BNF

SELECT DISTINCT o
FROM Order o JOIN o.lineItems 1
WHERE 1.shipped = FALSE

Find all orders in which the shipping address differs from the billing address. This example assumes
that the application developer uses two distinct entity types to designate shipping and billing
addresses.

SELECT o
FROM Order o
WHERE
NOT (o.shippingAddress.state = o.billingAddress.state AND
o.shippingAddress.city = o.billingAddress.city AND
o.shippingAddress.street = o.billingAddress.street)

If the application developer uses a single entity type in two different relationships for both the
shipping address and the billing address, the above expression can be simplified based on the equality
rules defined in Section 4.12. The query can then be written as:

SELECT o
FROM Order o
WHERE o.shippingAddress <> o.billingAddress

The query checks whether the same entity abstract schema type instance (identified by its primary
key) is related to an order through two distinct relationships.

4.13.3. Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parameter:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1
WHERE 1.product.name = ?1

For this query, the input parameter must be of the type of the state field name, i.e., a string.

4.14. BNF

BNF notation summary:

* {... } grouping

216 Jakarta Persistence

4.14. BNF

* [...] optional constructs
e * 7ero or more

e +0ne or more

| alternates

The following is the BNF for the Jakarta Persistence query language.

QL_statement ::= select_statement | update_statement | delete_statement
select_statement ::= select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]
update_statement ::= update_clause [where_clause]
delete _statement ::= delete _clause [where_clause]
from_clause ::=
FROM 1identification_variable_declaration
{, {identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration {join | fetch_join}*
range_variable_declaration ::= entity_name [AS] identification_variable
join ::= join_spec join_association_path_expression [AS] identification_variable
[join_condition]
fetch_join ::= join_spec FETCH join_association_path_expression
join_spec ::= [LEFT [OUTER] | INNER] JOIN
join_condition ::= ON conditional_expression
join_association_path_expression ::=
join_collection_valued_path_expression |
join_single_valued_path_expression |
TREAT(join_collection_valued_path_expression AS subtype) |
TREAT(join_single_valued_path_expression AS subtype)
join_collection_valued_path_expression ::=
identification_variable.{single_valued_embeddable_object_field.}*
collection_valued_field
join_single_valued_path_expression ::=
identification_variable.{single_valued_embeddable_object_field.}*
single_valued_object_field
collection_member _declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable
qualified_identification_variable ::=
map_field_identification_variable |
ENTRY(identification_variable)
map_field_identification_variable ::=
KEY(identification_variable) |
VALUE(identification_variable)
single_valued_path_expression ::=
qualified_identification_variable |
TREAT(qualified_identification_variable AS subtype) |
state_field_path_expression |
single_valued_object_path_expression

Jakarta Persistence 217

4.14. BNF

general_identification_variable ::=

identification_variable |

map_field_identification_variable
general_subpath ::= simple_subpath | treated_subpath{.single_valued_object_field}*
simple_subpath ::=

general_identification_variable |

general_identification_variable{.single_valued_object_field}*
treated_subpath ::= TREAT(general_subpath AS subtype)
state_field_path_expression ::= general_subpath.state_field
state_valued_path_expression ::=

state_field_path_expression | general_identification_variable
single_valued_object_path_expression ::=

general_subpath.single_valued_object_field
collection_valued_path_expression ::= general_subpath.{collection_valued_field}
update_clause ::= UPDATE entity_name [[AS] identification_variable]

SET update_item {, update_item}*
update_item ::= [identification_variable.]{single_valued_embeddable_object_field.}*

{state_field | single_valued_object_field} = new_value
new_value ::=

scalar_expression |

simple_entity_expression |

NULL
delete_clause ::= DELETE FROM entity_name [[AS] identification_variable]
select_clause ::= SELECT [DISTINCT] select_item {, select_item}*
select_item ::= select_expression [[AS] result_variable]
select_expression ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable |

OBJECT(identification_variable) |

constructor_expression
constructor_expression ::=

NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable
aggregate_expression ::=

{AVG | MAX | MIN | SUM} ([DISTINCT] state_valued_path_expression) |

COUNT ([DISTINCT] identification_variable | state_valued_path_expression

single_valued_object_path_expression) |
function_invocation

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression | identification_variable
having_clause ::= HAVING conditional_expression

218 Jakarta Persistence

4.14. BNF

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::=
state_field_path_expression |
general_identification_variable |
result_variable
[ASC | DESC]
subquery ::= simple_select_clause subquery_from_clause [where_clause]
[groupby_clause] [having_clause]
subquery_from_clause ::=
FROM subselect identification_variable declaration
{, subselect_identification_variable_declaration |
collection_member _declaration}*
subselect identification_variable _declaration ::=
identification_variable_declaration |
derived_path_expression [AS] identification_variable {join}* |
derived _collection_member_declaration
derived_path_expression ::=
general_derived_path.single_valued_object_field |
general_derived_path.collection_valued_field
general_derived_path ::=
simple_derived_path |
treated_derived_path{.single_valued_object_field}*
simple_derived_path ::= superquery_identification_variable{.single_valued_object_field}*
treated_derived_path ::= TREAT(general_derived_path AS subtype)
derived _collection_member _declaration ::=
IN
superquery_identification_variable.{single_valued_object_field.}*collection_valued_field
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::=
single_valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
scalar_expression ::=
arithmetic_expression |
string_expression |
enum_expression |
datetime_expression |
boolean_expression |
case_expression |
entity_type_expression
conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=
comparison_expression |
between_expression |

Jakarta Persistence 219

4.14. BNF

in_expression |

like_expression |

null_comparison_expression |

empty_collection_comparison_expression

collection_member_expression |

exists_expression
between_expression ::=

arithmetic_expression [NOT] BETWEEN

arithmetic_expression AND arithmetic_expression |

string_expression [NOT] BETWEEN string_expression AND string_expression |

datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression
in_expression ::=

{state_valued_path_expression | type_discriminator} [NOT] IN

{(in_item{, in_item}*) | (subquery) | collection_valued_input_parameter}

in_item ::= literal | single_valued_input_parameter
like_expression ::=

string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=

{single_valued_path_expression | input_parameter} IS [NOT] NULL
empty_collection_comparison_expression ::=

collection_valued_path_expression IS [NOT] EMPTY
collection_member_expression ::= entity_or_value_expression

[NOT] MEMBER [OF] collection_valued_path_expression
entity_or_value_expression ::=

single_valued_object_path_expression |

state_field_path_expression |

simple_entity_or_value_expression
simple_entity_or_value_expression ::=

identification_variable |

input_parameter |

literal
exists_expression ::= [NOT] EXISTS (subquery)
all_or_any_expression ::= {ALL | ANY | SOME} (subquery)
comparison_expression ::=

string_expression comparison_operator {string_expression | all_or_any_expression} |

boolean_expression {= | <>} {boolean_expression | all_or_any_expression} |

enum_expression {= | <>} {enum_expression | all_or_any_expression} |

datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |

entity_expression {= | <>_} {entity_expression | all_or_any_expression} |

arithmetic_expression comparison_operator {arithmetic_expression |
all_or_any_expression} |

entity_type_expression {= | <>} entity_type_expression}
comparison_operator ::= = | > | >= | < | <= | <
arithmetic_expression ::

arithmetic_term | arithmetic_expression {+ | -} arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term {* | /} arithmetic_factor
arithmetic_factor ::= [{+ | -}] arithmetic_primary

220 Jakarta Persistence

4.14. BNF

arithmetic_primary ::=
state_valued_path_expression |
numeric_literal |
(arithmetic_expression) |
input_parameter |
functions_returning_numerics |
aggregate_expression |
case_expression |
function_invocation |
(subquery)

string_expression ::=
state_valued_path_expression |
string_literal |
input_parameter |
functions_returning_strings |
aggregate_expression |
case_expression |
function_invocation |
(subquery)

datetime_expression ::=
state_valued_path_expression |
input_parameter |
functions_returning_datetime |
aggregate_expression |
case_expression |
function_invocation |
date_time_timestamp_literal |
(subquery)

boolean_expression ::=
state_valued_path_expression |
boolean_literal |
input_parameter |
case_expression |
function_invocation |
(subquery)

enum_expression ::=
state_valued_path_expression
enum_literal |
input_parameter |
case_expression |

(subquery)
entity_expression ::= single_valued_object_path_expression | simple_entity_expression
simple_entity_expression ::= identification_variable | input_parameter

entity_type_expression ::=
type_discriminator |
entity_type_literal |
input_parameter

type_discriminator ::=

Jakarta Persistence 221

4.14. BNF

TYPE(general_identification_variable |
single_valued_object_path_expression |
input_parameter)
functions_returning_numerics ::=
LENGTH(string_expression) |
LOCATE(string_expression, string_expression[, arithmetic_expression]) |
ABS(arithmetic_expression) |
SQRT(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression) |
SIZE(collection_valued_path_expression) |
INDEX(identification_variable)
functions_returning_datetime ::=
CURRENT_DATE |
CURRENT_TIME |
CURRENT_TIMESTAMP
functions_returning_strings ::=
CONCAT(string_expression, string_expression{, string_expression}*) |
SUBSTRING(string_expression, arithmetic_expression[, arithmetic_expression]) |
TRIM([[trim_specification] [trim_character] FROM] string_expression) |
LOWER(string_expression) |
UPPER(string_expression)
trim_specification ::= LEADING | TRAILING | BOTH
function_invocation ::= FUNCTION(function_name{, function_arg}*)
function_arg ::=
literal |
state_valued_path_expression |
input_parameter |
scalar_expression
_case_expression ::i=_
general_case_expression |
simple_case_expression |
coalesce_expression |
nullif_expression
general_case_expression::= CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause ::= WHEN conditional_expression THEN scalar_expression
simple_case_expression ::=
CASE case_operand simple_when_clause {simple_when_clause}*
ELSE scalar_expression

END
case_operand ::= state_valued_path_expression | type_discriminator
simple_when_clause ::= WHEN scalar_expression THEN scalar_expression
coalesce_expression ::= COALESCE(scalar_expression{, scalar_expression}+)

nullif_expression::= NULLIF(scalar_expression, scalar_expression)

[56] This chapter uses the convention that reserved identifiers appear in upper case in the examples and BNF for the
language.
[57] BIT_LENGTH, CHAR_LENGTH, CHARACTER_LENGTH, POSITION, and UNKNOWN are not currently used: they are

222 Jakarta Persistence

4.14. BNF

reserved for future use.

[58] A range variable must not designate an embeddable class abstract schema type.

[59] Note that use of VALUE is optional, as an identification variable referring to an association of type java.util. Map is of
the abstract schema type of the map value. (See Section 4.4.2.)

[60] The implementation is not expected to perform such query operations involving such fields in memory rather than
in the database.

[61] Note that queries that contain subqueries on both sides of a comparison operation will not be portable across all
databases.

[62] Refer to [2] for a more precise characterization of these rules.

[63] The use of the reserved word OF is optional in this expression.

[64] Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM
clause will be considered in a later release of this specification.

[65] Note that expressions involving aggregate operators must not be used in the WHERE clause.

[66] Note that not all databases support the use of a trim character other than the space character; use of this argument
may result in queries that are not portable.

[67] Note that not all databases support the use of the third argument to LOCATE; use of this argument may result in
queries that are not portable.

[68] Note that not all databases support the use of SQL case expressions. The use of case expressions may result in
queries that are not portable to such databases.

[69] Note that the keyword OBJECT is not required. It is preferred that it be omitted for new queries.

[70] This can be used, for example, to refer to a select expression in the ORDER BY clause.

[71] It is legal to specify DISTINCT with MAX or MIN, but it does not affect the result.

[72] In the case of a general or simple case expression, these are the scalar expressions of the THEN and ELSE clauses.

Jakarta Persistence 223

5.1. Metamodel API Interfaces

Chapter 5. Metamodel API

This specification provides a set of interfaces for dynamically accessing the metamodel corresponding
to the managed classes of a persistence unit.

5.1. Metamodel API Interfaces

The jakarta.persistence.metamodel interfaces provide __ for dynamically accessing the metamodel of
the persistent state and relationships of the managed classes of a persistence unit.

The metamodel can be accessed through the EntityManagerFactory or EntityManager getMetamodel
methods.

The metamodel API may be extended to cover object/relational mapping information in a future
release of this specification.

5.1.1. Metamodel Interface

package jakarta.persistence.metamodel;

import java.util.Set;

/**

* Provides access to the metamodel of persistent
* entities in the persistence unit.

*

* @since 2.0

*/

public interface Metamodel {

* Return the metamodel entity type representing the entity.
* @param cls the type of the represented entity

* @return the metamodel entity type

* @throws IllegalArgumentException if not an entity

<X> EntityType<X> entity(Class<X> cls);

* Return the metamodel managed type representing the

* entity, mapped superclass, or embeddable class.

* @param cls the type of the represented managed class

* @return the metamodel managed type

* @throws IllegalArgumentException if not a managed class

224 Jakarta Persistence

5.1. Metamodel API Interfaces

<X> ManagedType<X> managedType(Class<X> cls);

* Return the metamodel embeddable type representing the

* embeddable class.

* @param cls the type of the represented embeddable class

* @return the metamodel embeddable type

* @throws IllegalArgumentException if not an embeddable class

<X> EmbeddableType<X> embeddable((Class<X> cls);

/**

* Return the metamodel managed types.
* @return the metamodel managed types
*/

Set<ManagedType<?>> getManagedTypes();

/**

* Return the metamodel entity types.
* @return the metamodel entity types
*/

Set<EntityType<?>> getEntities();

/**

* Return the metamodel embeddable types. Returns empty set
* if there are no embeddable types.

* @return the metamodel embeddable types

*/

Set<EmbeddableType<?>> getEmbeddables();

5.1.2. Type Interface

Jakarta Persistence 225

5.1. Metamodel API Interfaces

package jakarta.persistence.metamodel;

/**

* Instances of the type <code>Type</code> represent persistent object
or attribute types.

*

*
* @param <X> The type of the represented object or attribute

*

* @since 2.0
*/
public interface Type<X> {

public static enum PersistenceType {

/** Entity */
ENTITY,

/** Embeddable class */
EMBEDDABLE,

/** Mapped superclass */
MAPPED_SUPERCLASS,

/** Basic type */
BASIC
}

/**

* Return the persistence type.

* @return persistence type

*/

PersistenceType getPersistenceType();
/**

* Return the represented Java type.
* @return Java type

*/

(lass<X> getJavaType();

5.1.3. ManagedType Interface

package jakarta.persistence.metamodel;

import java.util.Set;

226 Jakarta Persistence

/**

b T R R R R

*/

5.1. Metamodel API Interfaces

@param <X> The represented type.

@since 2.0

public interface ManagedType<X> extends Type<X> {

/'k'k
*

*

*/

Return the attributes of the managed type.
@return attributes of the managed type

Set<Attribute<? super X, ?>> getAttributes();

Return the attributes declared by the managed type.
Returns empty set if the managed type has no declared
attributes.

@return declared attributes of the managed type

Set<Attribute<X, 7>> getDeclaredAttributes();

/'k*

* % X ok

* % F

<Y>

/**

* % X * X

* X % *

Return the single-valued attribute of the managed

type that corresponds to the specified name and Java type.

@param name the name of the represented attribute

@param type the type of the represented attribute

@return single-valued attribute with given name and type

@throws IllegalArgumentException if attribute of the given
name and type is not present in the managed type

SingularAttribute<? super X, Y> getSingularAttribute(String name

Return the single-valued attribute declared by the

managed type that corresponds to the specified name and

Java type.

@param name the name of the represented attribute

@param type the type of the represented attribute

@return declared single-valued attribute of the given
name and type

@throws IllegalArqgumentException if attribute of the given
name and type is not declared in the managed type

Instances of the type <code>ManagedType</code> represent entity, mapped
superclass, and embeddable types.

, Class<Y> type);

Jakarta Persistence 227

5.1. Metamodel API Interfaces

<Y> SingularAttribute<X, Y> getDeclaredSingularAttribute(String name, Class<Y> type);

/'k'k

* Return the single-valued attributes of the managed type.

* Returns empty set if the managed type has no single-valued
* attributes.

* @return single-valued attributes

*/
Set<SingularAttribute<? super X, 7>> getSingularAttributes();

* Return the single-valued attributes declared by the managed
* type.

* Returns empty set if the managed type has no declared

* single-valued attributes.

* @return declared single-valued attributes

*/

Set<SingularAttribute<X, 7>> getDeclaredSingularAttributes();

/'k'k

Return the Collection-valued attribute of the managed type

that corresponds to the specified name and Java element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return CollectionAttribute of the given name and element
type

@throws I1legalArgumentException if attribute of the given
name and type is not present in the managed type

* 0% ok F X

*

* % F

*/
<E> CollectionAttribute<? super X, E> getCollection(String name, Class<E>
elementType);

/**

* Return the Collection-valued attribute declared by the
* managed type that corresponds to the specified name and Java
* element type.
@param name the name of the represented attribute
@param elementType the element type of the represented
attribute
@return declared <code>CollectionAttribute</code> of the given name and
element type

* @throws IllegalArgumentException if attribute of the given

* name and type is not declared in the managed type

*/

<E> CollectionAttribute<X, E> getDeclaredCollection(String name, Class<E>
elementType);

*

* X % *

228 Jakarta Persistence

5.1. Metamodel API Interfaces

/'k'k

Return the Set-valued attribute of the managed type that

corresponds to the specified name and Java element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return SetAttribute of the given name and element type

@throws IllegalArgumentException if attribute of the given
name and type is not present in the managed type

* 0% X %k X X * X

*
S~

<E> SetAttribute<? super X, E> getSet(String name, Class<E> elementType);

/'k'k

Return the Set-valued attribute declared by the managed type
that corresponds to the specified name and Java element type.
@param name the name of the represented attribute
@param elementType the element type of the represented
attribute
@return declared SetAttribute of the given name and
element type
@throws IllegalArgumentException if attribute of the given
name and type is not declared in the managed type

E R T R T

*
~

<E> SetAttribute<X, E> getDeclaredSet(String name, Class<E> elementType);

/**

Return the List-valued attribute of the managed type that

corresponds to the specified name and Java element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return ListAttribute of the given name and element type

@throws IllegalArgumentException if attribute of the given
name and type is not present in the managed type

* 0% kX X X X X

*
~

<E> ListAttribute<? super X, E> getlList(String name, Class<E> elementType);

/**

Return the List-valued attribute declared by the managed

type that corresponds to the specified name and Java

element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return declared ListAttribute of the given name and
element type

@throws IllegalArgumentException if attribute of the given
name and type is not declared in the managed type

b R R T I

Jakarta Persistence 229

5.1. Metamodel API Interfaces

*/
<E> ListAttribute<X, E> getDeclaredlList(String name, Class<E> elementType);

/**

* Return the Map-valued attribute of the managed type that

corresponds to the specified name and Java key and value

types.

@param name the name of the represented attribute

@param keyType the key type of the represented attribute

@param valueType the value type of the represented attribute

@return MapAttribute of the given name and key and value

types

* @throws IllegalArgumentException if attribute of the given

* name and type is not present in the managed type

*/

<K, V> MapAttribute<? super X, K, V> getMap(String name,
(lass<K> keyType,
Class<V> valueType);

*

* X % * X

*

/'k'k

Return the Map-valued attribute declared by the managed
type that corresponds to the specified name and Java key
and value types.
@param name the name of the represented attribute
@param keyType the key type of the represented attribute
@param valueType the value type of the represented attribute
@return declared MapAttribute of the given name and key
and value types
@throws IllegalArqumentException if attribute of the given
name and type is not declared in the managed type

* % X ok

*

*

* X % *

*
/
<K, V> MapAttribute<X, K, V> getDeclaredMap(String name,
Class<K> keyType,
Class<V> valueType);

/**

* Return all multi-valued attributes (Collection-, Set-,
List-, and Map-valued attributes) of the managed type.

*

* Returns empty set if the managed type has no multi-valued

* attributes.

* @return Collection-, Set-, List-, and Map-valued attributes
*/

Set<PluralAttribute<? super X, ?, 7>> getPluralAttributes();

/**

* Return all multi-valued attributes (Collection-, Set-,
* List-, and Map-valued attributes) declared by the
* managed type.

230 Jakarta Persistence

5.1. Metamodel API Interfaces

* Returns empty set if the managed type has no declared

* multi-valued attributes.

* @return declared Collection-, Set-, List-, and Map-valued
* attributes

*/

Set<PluralAttribute<X, ?, 7>> getDeclaredPluralAttributes();

//String-based:

/**

*

Return the attribute of the managed

type that corresponds to the specified name.

@param name the name of the represented attribute

@return attribute with given name

@throws I1legalArgumentException if attribute of the given
name is not present in the managed type

* 0% F X X

*/
Attribute<? super X, 7> getAttribute(String name);

/**

* Return the attribute declared by the managed

type that corresponds to the specified name.

@param name the name of the represented attribute

@return attribute with given name

@throws I1legalArgumentException if attribute of the given
name is not declared in the managed type

*

*

* % F

*/
Attribute<X, 7> getDeclaredAttribute(String name);

/**

* Return the single-valued attribute of the managed type that
* corresponds to the specified name.

* @param name the name of the represented attribute

*

@return single-valued attribute with the given name

@throws IllegalArgumentException if attribute of the given

* name is not present in the managed type

*/

SingularAttribute<? super X, 7> getSingularAttribute(String name);

*

/**

* Return the single-valued attribute declared by the managed
type that corresponds to the specified name.
@param name the name of the represented attribute
@return declared single-valued attribute of the given
name
@throws IllegalArgumentException if attribute of the given
name is not declared in the managed type

* X % * X

*

Jakarta Persistence 231

5.1. Metamodel API Interfaces

*/
SingularAttribute<X, 7> getDeclaredSingularAttribute(String name);

/**

* Return the Collection-valued attribute of the managed type

* that corresponds to the specified name.

* @param name the name of the represented attribute

@return CollectionAttribute of the given name

@throws IllegalArgumentException if attribute of the given
name is not present in the managed type

* % F

*/
CollectionAttribute<? super X, ?> getCollection(String name);

/**

Return the Collection-valued attribute declared by the
managed type that corresponds to the specified name.
@param name the name of the represented attribute

@return declared CollectionAttribute of the given name
@throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type

*/

CollectionAttribute<X, 7> getDeclaredCollection(String name);

* X % *

*

/**

Return the Set-valued attribute of the managed type that

corresponds to the specified name.

@param name the name of the represented attribute

@return SetAttribute of the given name

@throws IllegalArqumentException if attribute of the given
name is not present in the managed type

* 0% % * X X

*
/
SetAttribute<? super X, 7> getSet(String name);

/**

* Return the Set-valued attribute declared by the managed type

that corresponds to the specified name.

@param name the name of the represented attribute

@return declared SetAttribute of the given name

@throws IllegalArqgumentException if attribute of the given
name is not declared in the managed type

*

* % % F

*/
SetAttribute<X, 7> getDeclaredSet(String name);

/'k'k
Return the List-valued attribute of the managed type that
corresponds to the specified name.

@param name the name of the represented attribute
@return ListAttribute of the given name

* X ok

*

232 Jakarta Persistence

5.1. Metamodel API Interfaces

* @throws IllegalArgumentException if attribute of the given
* name is not present in the managed type

*/

ListAttribute<? super X, ?> getlList(String name);

/**

* Return the List-valued attribute declared by the managed
type that corresponds to the specified name.

@param name the name of the represented attribute

@return declared ListAttribute of the given name

@throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type

*/

ListAttribute<X, ?> getDeclaredList(String name);

* X % F

/**

* Return the Map-valued attribute of the managed type that

corresponds to the specified name.

@param name the name of the represented attribute

@return MapAttribute of the given name

@throws IllegalArgumentException if attribute of the given
name is not present in the managed type

*

*

* % F

*/
MapAttribute<? super X, ?, 7> getMap(String name);

/**

Return the Map-valued attribute declared by the managed
type that corresponds to the specified name.

@param name the name of the represented attribute

@return declared MapAttribute of the given name

@throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type
*/

MapAttribute<X, ?, 7> getDeclaredMap(String name);

* X % *

*

5.1.4. IdentifiableType Interface

package jakarta.persistence.metamodel;
import java.util.Set;
/**

Instances of the type <code>IdentifiableType</code> represent entity or

* mapped superclass types.
*

Jakarta Persistence 233

5.1. Metamodel API Interfaces

@param <X> The represented entity or mapped superclass type.

*
*
* @since 2.0
*

public interface IdentifiableType<X> extends ManagedType<X> {

/'k*

* % X ok

* % F

<Y>

/**

* X X * X

* % F

<Y>

/**

* X % *

*

*/
<Y>

/**

* X % * X

*

Return the attribute that corresponds to the id attribute of

the entity or mapped superclass.

@param type the type of the represented id attribute

@return id attribute

@throws IllegalArgumentException if id attribute of the given
type is not present in the identifiable type or if
the identifiable type has an id class

SingularAttribute<? super X, Y> getId(Class<Y> type);

Return the attribute that corresponds to the id attribute
declared by the entity or mapped superclass.
@param type the type of the represented declared
id attribute
@return declared id attribute
@throws IllegalArgumentException if id attribute of the given
type is not declared in the identifiable type or if
the identifiable type has an id class

SingularAttribute<X, Y> getDeclaredId(Class<Y> type);

Return the attribute that corresponds to the version

attribute of the entity or mapped superclass.

@param type the type of the represented version attribute

@return version attribute

@throws IllegalArgumentException if version attribute of the
given type is not present in the identifiable type

SingularAttribute<? super X, Y> getVersion(Class<Y> type);

Return the attribute that corresponds to the version
attribute declared by the entity or mapped superclass.
@param type the type of the represented declared version
attribute
@return declared version attribute
@throws I1legalArgumentException if version attribute of the
type is not declared in the identifiable type

234 Jakarta Persistence

5.1. Metamodel API Interfaces

*/
<Y> SingularAttribute<X, Y> getDeclaredVersion(Class<Y> type);

* Return the identifiable type that corresponds to the most

* specific mapped superclass or entity extended by the entity
* or mapped superclass.

* @return supertype of identifiable type or null if no

such supertype

*/

IdentifiableType<? super X> getSupertype();

/**

* Whether the identifiable type has a single id attribute.
Returns true for a simple id or embedded id; returns false
for an idclass.
@return boolean indicating whether the identifiable

type has a single id attribute

* X % *

*
/
boolean hasSingleIdAttribute();

/**

* Whether the identifiable type has a version attribute.
* @return boolean indicating whether the identifiable

* type has a version attribute

*/

boolean hasVersionAttribute();

/**

* Return the attributes corresponding to the id class of the
* identifiable type.

* @return id attributes

* @throws IllegalArgumentException if the identifiable type
* does not have an id class

*/

Set<SingularAttribute<? super X, 7>> getIdClassAttributes();

/**

* Return the type that represents the type of the id.
* @return type of id

*/
Type<?> getIdType();

5.1.5. EntityType Interface

Jakarta Persistence 235

5.1. Metamodel API Interfaces

package jakarta.persistence.metamodel;

/**

* Instances of the type <code>EntityType</code> represent entity types.

*

@param <X> The represented entity type.

*
*

*

@since 2.0
*

*
/
public interface EntityType<X>
extends IdentifiableType<X>, Bindable<X>{

/**

* Return the entity name.
* @return entity name

*/

String getName();

5.1.6. EmbeddableType Interface

package jakarta.persistence.metamodel;

/**
* Instances of the type <code>EmbeddableType</code> represent embeddable types.

*

* @param <X> The represented type.
*

* @since 2.0
*

*
/
public interface EmbeddableType<X> extends ManagedType<X> {}

5.1.7. MappedSuperclassType Interface

236 Jakarta Persistence

5.1. Metamodel API Interfaces

package jakarta.persistence.metamodel;

/**

* Instances of the type <code>MappedSuperclassType</code> represent mapped
superclass types.

*

* X

@param <X> The represented entity type
@since 2.0

*

*/
public interface MappedSuperclassType<X> extends IdentifiableType<X> {}

5.1.8. BasicType Interface

package jakarta.persistence.metamodel;

/**

* Instances of the type <code>BasicType</code> represent basic types (including
* temporal and enumerated types).
*

@param <X> The type of the represented basic type

*
*

*

@since 2.0
*/
public interface BasicType<X> extends Type<X> {}

5.1.9. Bindable Interface

Jakarta Persistence 237

5.1. Metamodel API Interfaces

package jakarta.persistence.metamodel;

import jakarta.persistence.criteria.Path;

/**
* Instances of the type <code>Bindable</code> represent object or attribute types
* that can be bound into a {@link Path Path}.

* @param <T> The type of the represented object or attribute
* @since 2.0

*/
public interface Bindable<T> {

public static enum BindableType {

/** Single-valued attribute type */
SINGULAR_ATTRIBUTE,

/** Multi-valued attribute type */
PLURAL_ATTRIBUTE,

/** Entity type */
ENTITY_TYPE
}

/'k'k

* Return the bindable type of the represented object.
* @return bindable type

*/

BindableType getBindableType();

/**

Return the Java type of the represented object.

If the bindable type